1v02E

10 Proven Ways to Optimize Laravel for High Traffic

10 Proven Ways to Optimize Laravel for High Traffic

When your Laravel app starts attracting high traffic, performance bottlenecks become
critical. A slow site means lost users and revenue. Laravel provides multiple tools, and with
the right best practices, you can scale your app to handle thousands of requests per second.
In this guide, we’ll cover 10 proven optimization techniques—from caching and queues to
database tuning and server setup—plus link you to in-depth tutorials for deeper dives.

1 - Enable Config, Route & View Caching

Laravel allows caching of configuration, routes, and compiled views to reduce overhead.

php artisan config:cache
php artisan route:cache
php artisan view:cacheCode language: Bash (bash)

These commands compile files into optimized PHP arrays, drastically cutting down load
times. Run them in your deployment pipeline.

2 - Use Query Caching with Redis

Database queries often become a bottleneck. Cache results in Redis to reduce repeated
calls.

Laravel Starter Kits

https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic/
https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic/
https://1v0.net

1v02E

$posts = Cache::remember('latest posts', 60, function () {
return Post::latest()->take(20)->get();
}) ;Code language: PHP (php)

This caches the query for 60 seconds. Subsequent requests read from Redis instead of
hitting the DB. For a detailed comparison of cache stores, see Caching Strategies in Laravel:
Redis vs Database vs File.

3 - Optimize Database with Indexes

Adding indexes to frequently queried columns can speed up lookups dramatically.

// database/migrations/add index to users email.php

Schema: :table('users', function (Blueprint $table) {
$table->index('email');

}) ;Code language: PHP (php)

This adds an index to the email column. Always analyze queries with EXPLAIN in
MySQL/Postgres to confirm. For a full guide, check How to Speed Up Laravel with Database

Indexing.

4 - Reduce N+1 Queries with Eager Loading

The N+1 query problem slows down high-traffic apps. Use with() to fetch relationships in
fewer queries.

$users = User::with('posts.comments')->get();Code language: PHP (php)

Laravel Starter Kits

https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file
https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file
https://1v0.net/blog/how-to-speed-up-laravel-with-database-indexing
https://1v0.net/blog/how-to-speed-up-laravel-with-database-indexing
https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic/
https://1v0.net

1v02E

This loads users, their posts, and comments in one go. For best practices, read Eager
Loading vs Lazy L.oading in Laravel: Best Practices.

5 - Use Queues for Heavy Jobs

Don’t let emails, reports, or API calls block requests. Offload them to queues.

// Dispatching a queued job
SendWelcomeEmail: :dispatch($user);Code language: PHP (php)

This pushes work into your queue system (Redis, Beanstalkd, SQS). Your app responds
instantly while workers process jobs in the background. Learn more in How to Use Laravel
Queues for Faster Performance.

6 - Optimize Asset Delivery

Large CSS/]S files slow requests. Use Laravel Mix or Vite to minify and version assets, and
serve them via CDN.

npm run buildCode language: Bash (bash)

This produces minified, cache-busted files. Use mix () or vite() in Blade to reference the
correct versions.

Laravel Starter Kits

https://1v0.net/blog/eager-loading-vs-lazy-loading-in-laravel-best-practices
https://1v0.net/blog/eager-loading-vs-lazy-loading-in-laravel-best-practices
https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance
https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance
https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic/
https://1v0.net

1v02E

7 - Scale with Octane

Laravel Octane runs on Swoole or RoadRunner, keeping the app in memory between
requests for lightning-fast responses.

composer require laravel/octane
php artisan octane:startCode language: Bash (bash)

Octane removes PHP’s per-request bootstrapping. For advanced scaling, see Optimizing
Laravel for High Concurrency with Octane.

8 - Monitor Performance with Telescope

Laravel Telescope gives deep insight into queries, requests, jobs, and cache hits. Perfect
for diagnosing bottlenecks in real time.

composer require laravel/telescope --dev
php artisan telescope:install
php artisan migrateCode language: Bash (bash)

Once installed, visit /telescope to monitor app activity. See our detailed guide Using
Laravel Telescope to Debug Performance Issues.

Laravel Starter Kits

https://1v0.net/blog/optimizing-laravel-for-high-concurrency-with-octane
https://1v0.net/blog/optimizing-laravel-for-high-concurrency-with-octane
https://1v0.net/blog/using-laravel-telescope-to-debug-performance-issues
https://1v0.net/blog/using-laravel-telescope-to-debug-performance-issues
https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic/
https://1v0.net

1v02E

9 - Use PHP OPcache

Enable OPcache in your PHP setup. It caches compiled bytecode, cutting response times in
half.

; php.ini

opcache.enable=1

opcache.memory consumption=128

opcache.max accelerated files=10000Code language: TOML, also INI (ini)

This ensures your app’s PHP code is compiled once and reused across requests, reducing
CPU load.

10 - Horizontal Scaling & Load Balancing

For very high traffic, scale horizontally. Run multiple app servers behind a load balancer,
and use a shared cache/database layer.

upstream laravel app {
server appl:9000;
server app2:9000;

}

server {
location / {
proxy pass http://laravel app;

}

Laravel Starter Kits

https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic/
https://1v0.net

1v02E

}Code language: Nginx (nginx)

This Nginx config balances requests across two Laravel app servers. Combine with a
managed DB cluster and Redis cache for best results.

Wrapping Up

We explored 10 proven techniques to optimize Laravel for high traffic: caching, indexing,
eager loading, queues, assets, Octane, monitoring, OPcache, and load balancing. Combined,
these approaches ensure your app scales smoothly. Start with quick wins (config cache,
query indexes) and move towards advanced scaling (Octane, horizontal scaling) as traffic
grows.

What'’s Next

» How to Use Laravel Queues for Faster Performance — dive deeper into offloading
heavy jobs.

» Caching Strategies in Laravel: Redis vs Database vs File — detailed cache storage
comparisons.

» Using Laravel Telescope to Debug Performance Issues — learn to monitor queries,
jobs, and bottlenecks.

Laravel Starter Kits

https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance
https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file
https://1v0.net/blog/using-laravel-telescope-to-debug-performance-issues
https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic/
https://1v0.net

