
Laravel Starter Kits

Building a Mobile App Backend with Laravel 12 API

Building a Mobile App Backend with Laravel 12 API
A mobile app needs a reliable backend to handle authentication, serve JSON data, sync user
content, and enforce security. Laravel 12 provides everything you need to build a RESTful
API that mobile apps (iOS/Android) can consume easily. In this tutorial you’ll create
authentication endpoints, version your API, format JSON consistently, apply rate limiting,
and prepare for push notifications.

1 – Set Up Sanctum for Mobile Token Auth
Mobile apps typically use token-based auth. Sanctum is lighter than Passport and perfect
for mobile-first APIs.

composer require laravel/sanctum

php artisan vendor:publish --
provider="Laravel\Sanctum\SanctumServiceProvider"

php artisan migrateCode language: Bash (bash)

Publishing Sanctum migrations adds personal_access_tokens. Tokens issued here are
tied to users, making mobile logins stateless and secure.

https://1v0.net/blog/building-a-mobile-app-backend-with-laravel-12-api/
https://1v0.net/blog/building-a-mobile-app-backend-with-laravel-12-api/
https://1v0.net

Laravel Starter Kits

2 – Auth Controller for Mobile
Create endpoints for login, logout, and fetching the current user. These return JSON only
(no views).

// app/Http/Controllers/Api/MobileAuthController.php
namespace App\Http\Controllers\Api;

use App\Http\Controllers\Controller;
use Illuminate\Http\Request;
use Illuminate\Support\Facades\Auth;

class MobileAuthController extends Controller
{
 public function login(Request $request)
 {
 $credentials = $request->validate([
 'email' => 'required|email',
 'password' => 'required'
]);

 if (! $token = Auth::attempt($credentials)) {
 return response()->json(['message' => 'Invalid
credentials'], 401);
 }

 $user = Auth::user();
 $token = $user->createToken('mobile')->plainTextToken;

 return response()->json([
 'token' => $token,
 'user' => $user,
]);
 }

 public function me(Request $request)
 {
 return response()->json($request->user());

https://1v0.net/blog/building-a-mobile-app-backend-with-laravel-12-api/
https://1v0.net

Laravel Starter Kits

 }

 public function logout(Request $request)
 {
 $request->user()->currentAccessToken()->delete();
 return response()->json(['message' => 'Logged out']);
 }
}Code language: PHP (php)

login validates credentials and issues a personal access token. The mobile client stores
this token securely (Keychain/Keystore). me lets apps fetch the logged-in user, while logout
revokes the token.

3 – API Versioning
Versioning avoids breaking old mobile clients. Use URI prefixes like /api/v1/ and separate
controllers by namespace.

// routes/api.php
use App\Http\Controllers\Api\MobileAuthController;

Route::prefix('v1')->group(function () {
 Route::post('/login', [MobileAuthController::class, 'login']);
 Route::post('/logout', [MobileAuthController::class,
'logout'])->middleware('auth:sanctum');
 Route::get('/me', [MobileAuthController::class,
'me'])->middleware('auth:sanctum');
});Code language: PHP (php)

Prefixing routes with v1 ensures older apps keep working when you release v2 with
changes. Each version can have its own controllers/resources.

https://1v0.net/blog/building-a-mobile-app-backend-with-laravel-12-api/
https://1v0.net

Laravel Starter Kits

4 – Consistent JSON Responses
Always return consistent shapes, so mobile devs can code against stable schemas. Wrap
responses in a common format.

// app/Http/Resources/UserResource.php
namespace App\Http\Resources;

use Illuminate\Http\Resources\Json\JsonResource;

class UserResource extends JsonResource
{
 public function toArray($request)
 {
 return [
 'id' => $this->id,
 'name' => $this->name,
 'email' => $this->email,
];
 }
}Code language: PHP (php)

UserResource ensures consistent user JSON regardless of DB schema changes. Use
resources for all entities returned to mobile clients.

// Example in controller
return response()->json([
 'status' => 'ok',
 'data' => new UserResource($request->user())
]);Code language: PHP (php)

Wrapping every response with status + data (and optionally error) gives mobile
developers a predictable structure across endpoints.

https://1v0.net/blog/building-a-mobile-app-backend-with-laravel-12-api/
https://1v0.net

Laravel Starter Kits

5 – Rate Limiting & Security
Mobile APIs are public-facing. Apply strict throttle limits to prevent brute force and
abuse.

// routes/api.php (snippet)
Route::middleware('throttle:60,1')->prefix('v1')->group(function () {
 // all endpoints here are limited to 60 per minute per IP
});Code language: PHP (php)

Use the throttle middleware globally or per route group. Adjust per your scale. Combine
with auth:sanctum so only authenticated clients can access sensitive endpoints.

6 – Push Notifications Hook (Optional)
Mobile apps often expect notifications. While Laravel doesn’t send push directly, you can
store device tokens and call FCM (Firebase) or APNs (Apple) APIs.

// database/migrations/...create_device_tokens.php
Schema::create('device_tokens', function (Blueprint $table) {
 $table->id();
 $table->foreignId('user_id')->constrained()->cascadeOnDelete();
 $table->string('token')->unique(); // FCM/APNs token
 $table->string('platform'); // ios / android
 $table->timestamps();
});Code language: PHP (php)

https://1v0.net/blog/building-a-mobile-app-backend-with-laravel-12-api/
https://1v0.net

Laravel Starter Kits

Saving device tokens per user allows you to target them with push via FCM/APNs when
certain backend events fire (new message, order shipped, etc.).

7 – Example Mobile Response
Here’s a sample JSON payload mobile clients would consume from a protected endpoint:

{
 "status": "ok",
 "data": {
 "user": {
 "id": 1,
 "name": "Alice",
 "email": "alice@example.com"
 },
 "posts": [
 {
 "id": 101,
 "title": "Hello World",
 "body": "This is the first post..."
 }
]
 }
}Code language: JSON / JSON with Comments (json)

This structure is predictable, easy to parse, and extendable. Even when you add new fields,
older mobile clients won’t break if they ignore them.

https://1v0.net/blog/building-a-mobile-app-backend-with-laravel-12-api/
https://1v0.net

Laravel Starter Kits

Wrapping Up
You built a mobile-ready backend: token auth with Sanctum, versioned endpoints, resource-
based JSON, rate limiting, and optional push integration. This setup ensures your
iOS/Android apps can consume data securely and reliably. Stick to consistent JSON schemas
and evolve with versioning when breaking changes are unavoidable.

What’s Next
Integrating Laravel with Third-Party APIs (Mail, SMS, Payment)
How to Build a Secure File Upload API in Laravel
Using Laravel Passport for Advanced API Authentication

https://1v0.net/blog/integrating-laravel-with-third-party-apis-mail-sms-payment
https://1v0.net/blog/how-to-build-a-secure-file-upload-api-in-laravel
https://1v0.net/blog/using-laravel-passport-for-advanced-api-authentication
https://1v0.net/blog/building-a-mobile-app-backend-with-laravel-12-api/
https://1v0.net

