
Laravel Starter Kits

Building a Team Management System with Laravel
Roles & Permissions
Many modern SaaS applications need team-based access control. For example, a user
might be an admin in one team but just a member in another. In Laravel 12, you can
achieve this by enabling team support in Spatie Permissions and building a management
UI for teams, members, and roles.

In this guide, we’ll create a Team Management System where users can belong to
multiple teams, each with its own roles and permissions. We’ll enable Spatie’s team mode,
update our models, enforce team roles with middleware, and build a UI to manage team
members.

1 – Enabling Teams in Spatie Permissions
The Spatie Laravel Permission package supports teams (multi-tenancy). By default it’s off,
but you can enable it in the config file. This ensures that all roles and permissions are
scoped to a specific team.

Fresh installation: open config/permission.php and enable teams:

'teams' => true,
'team_foreign_key' => 'team_id',Code language: PHP (php)

Then run the migrations. Spatie will automatically add team_id columns to its tables.

https://1v0.net/blog/building-a-team-management-system-with-laravel-roles-permissions/
https://1v0.net/blog/building-a-team-management-system-with-laravel-roles-permissions/
https://spatie.be/docs/laravel-permission
https://1v0.net/blog/building-a-team-management-system-with-laravel-roles-permissions/
https://1v0.net

Laravel Starter Kits

If Spatie was already installed without teams, you can still enable it:

Set 'teams' => true in config/permission.php.
Create a migration to add team_id to the model_has_roles and
model_has_permissions tables.

php artisan make:migration add_team_id_to_permission_tablesCode language:
CSS (css)

// database/migrations/xxxx_xx_xx_add_team_id_to_permission_tables.php
use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Support\Facades\Schema;

return new class extends Migration {
 public function up(): void {
 Schema::table('model_has_roles', function (Blueprint $table) {
$table->unsignedBigInteger('team_id')->nullable()->index();
 });

 Schema::table('model_has_permissions', function (Blueprint
$table) {
$table->unsignedBigInteger('team_id')->nullable()->index();
 });
 }

 public function down(): void {
 Schema::table('model_has_roles', function (Blueprint $table) {
 $table->dropColumn('team_id');
 });
 Schema::table('model_has_permissions', function (Blueprint
$table) {
 $table->dropColumn('team_id');
 });
 }
};Code language: PHP (php)

Once migrated, all role and permission checks will require a team context parameter.

https://1v0.net/blog/building-a-team-management-system-with-laravel-roles-permissions/
https://1v0.net

Laravel Starter Kits

2 – Updating Models
Create a Team model and link it with users. Users can belong to multiple teams with
different roles.

php artisan make:model Team -mCode language: CSS (css)

// app/Models/User.php
namespace App\Models;

use Illuminate\Foundation\Auth\User as Authenticatable;
use Illuminate\Database\Eloquent\Relations\BelongsToMany;

class User extends Authenticatable
{
 public function teams(): BelongsToMany
 {
 return $this->belongsToMany(Team::class)
 ->withPivot('role')
 ->withTimestamps();
 }
}Code language: PHP (php)

// app/Models/Team.php
namespace App\Models;

use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\Relations\BelongsToMany;

class Team extends Model
{
 protected $fillable = ['name'];

https://1v0.net/blog/building-a-team-management-system-with-laravel-roles-permissions/
https://1v0.net

Laravel Starter Kits

 public function users(): BelongsToMany
 {
 return $this->belongsToMany(User::class)
 ->withPivot('role')
 ->withTimestamps();
 }
}Code language: PHP (php)

3 – Assigning Roles with Team Context
When teams are enabled, you must always pass the team when assigning or checking roles
and permissions. For example:

$team = Team::find(1);
$user = User::find(10);

// Assign role in the context of a team
$user->assignRole('admin', $team);

// Check role in a team
if ($user->hasRole('admin', $team)) {
 // user is an admin of this team
}

// Check permission in a team
if ($user->can('edit posts', $team)) {
 // user can edit posts, but only within this team
}Code language: PHP (php)

Without passing the team parameter, the check will fail, because roles and permissions are
always scoped by team once this mode is enabled.

https://1v0.net/blog/building-a-team-management-system-with-laravel-roles-permissions/
https://1v0.net

Laravel Starter Kits

4 – Middleware for Team Access
To enforce team-based roles, we can create middleware that validates the user’s role in the
current team context.

php artisan make:middleware CheckTeamRoleCode language: CSS (css)

// app/Http/Middleware/CheckTeamRole.php
namespace App\Http\Middleware;

use Closure;
use Illuminate\Http\Request;

class CheckTeamRole
{
 public function handle(Request $request, Closure $next, $role)
 {
 $team = $request->route('team');

 if (! $request->user()->hasRole($role, $team)) {
 abort(403, 'Unauthorized team access.');
 }

 return $next($request);
 }
}Code language: PHP (php)

Now in your routes:

Route::middleware(['auth','team.role:admin'])->group(function () {
 Route::get('/teams/{team}/settings', function ($team) {
 return "Team Settings for team #{$team->id}";
 });

https://1v0.net/blog/building-a-team-management-system-with-laravel-roles-permissions/
https://1v0.net

Laravel Starter Kits

});Code language: PHP (php)

Only users with the admin role in that specific team can access the settings.

5 – UI for Managing Teams & Members
Finally, let’s add a management UI where team admins can invite members and assign them
roles.

// routes/web.php
use App\Http\Controllers\TeamController;

Route::middleware(['auth'])->group(function () {
 Route::resource('teams', TeamController::class);
});Code language: PHP (php)

// app/Http/Controllers/TeamController.php
namespace App\Http\Controllers;

use App\Models\Team;
use App\Models\User;
use Illuminate\Http\Request;

class TeamController extends Controller
{
 public function show(Team $team)
 {
 $users = $team->users;
 return view('teams.show', compact('team','users'));
 }

 public function addMember(Request $request, Team $team)
 {

https://1v0.net/blog/building-a-team-management-system-with-laravel-roles-permissions/
https://1v0.net

Laravel Starter Kits

 $user = User::where('email',$request->email)->firstOrFail();
 $user->assignRole('member', $team);
 return back()->with('status','Member added!');
 }

 public function updateMemberRole(Request $request, Team $team,
User $user)
 {
 $user->syncRoles([$request->role], $team);
 return back()->with('status','Role updated!');
 }
}Code language: PHP (php)

Example Blade view (resources/views/teams/show.blade.php):

@extends('layouts.app')

@section('content')
<div class="container">
 <h2>{{ $team->name }} Members</h2>

 @foreach($users as $user)

 {{ $user->name }} - Role: {{
$user->roles->pluck('name')->first() }}
 <form method="POST" action="{{ route('teams.updateMemberRole',
[$team, $user]) }}">
 @csrf
 @method('PUT')
 <select name="role">
 <option value="member">Member</option>
 <option value="admin">Admin</option>
 </select>
 <button type="submit" class="btn btn-sm btn-
primary">Update</button>
 </form>

 @endforeach

https://1v0.net/blog/building-a-team-management-system-with-laravel-roles-permissions/
https://1v0.net

Laravel Starter Kits

</div>
@endsectionCode language: HTML, XML (xml)

This UI allows admins to add members and change their team-specific roles easily.

Wrapping Up
We built a Team Management System in Laravel 12 using Spatie’s team feature. We
enabled team support, added migrations, scoped role checks to teams, created middleware
for team access, and built a UI for managing team members and their roles. With this
approach, users can belong to multiple teams with different roles in each — a must for SaaS
applications.

What’s Next
How to Create a Multi-Level Role & Permission System in Laravel
Laravel Middleware for Role-Based Route Protection
Creating a Role-Specific Dashboard in Laravel 12

https://1v0.net/blog/how-to-create-a-multi-level-role-and-permission-system-in-laravel
https://1v0.net/blog/laravel-middleware-for-role-based-route-protection
https://1v0.net/blog/creating-a-role-specific-dashboard-in-laravel-12
https://1v0.net/blog/building-a-team-management-system-with-laravel-roles-permissions/
https://1v0.net

