
Laravel Starter Kits

Caching Strategies in Laravel: Redis vs Database vs File

Caching Strategies in Laravel: Redis vs Database vs File
Caching is one of the fastest ways to improve performance in high-traffic Laravel apps.
Laravel supports multiple cache drivers—file, database, Redis, and more. Choosing the
right one can reduce response times dramatically. In this guide, we’ll compare File,
Database, and Redis caching, show you how to configure them, and explain when to use
each.

1 – Configuring the Cache Driver
You can set the cache driver in your .env file. Common options are file, database, and
redis.

.env CACHE_DRIVER=file # CACHE_DRIVER=database # CACHE_DRIVER=redis

This tells Laravel where to store cached data. Switch drivers by changing the
CACHE_DRIVER value and clearing the config cache.

2 – File Cache
The default driver in Laravel is file. It stores cache data in the
storage/framework/cache directory.

https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file/
https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file/
https://1v0.net

Laravel Starter Kits

// Store value
Cache::put('homepage_posts', $posts, 300);

// Retrieve value
$posts = Cache::get('homepage_posts');Code language: PHP (php)

File cache is easy to set up, but reading/writing to disk becomes slow under heavy load.
Suitable for small apps or low-traffic projects.

3 – Database Cache
Database caching stores key-value pairs in a database table. You’ll need to create the table
first:

php artisan cache:table
php artisan migrateCode language: Bash (bash)

This creates a cache table in your database. It’s more reliable than file caching in clustered
environments, but slower than memory-based caches like Redis.

// config/cache.php (snippet)
'default' => env('CACHE_DRIVER', 'database'),Code language: PHP (php)

Switch to the database driver in config/cache.php or via .env.

https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file/
https://1v0.net

Laravel Starter Kits

4 – Redis Cache
Redis is an in-memory data store and the fastest option for Laravel caching. Install the PHP
extension and client package.

composer require predis/predisCode language: Bash (bash)

.env CACHE_DRIVER=redis REDIS_HOST=127.0.0.1 REDIS_PASSWORD=null
REDIS_PORT=6379

Redis stores cache in memory, making reads/writes extremely fast. It’s ideal for high-traffic
applications. For advanced usage like tagging and queues, Redis is the recommended
option. For queue-specific performance, see How to Use Laravel Queues for Faster
Performance.

5 – Cache Tags
With Redis or Memcached, you can group related cache entries using tags and flush them
together.

// Store with tag
Cache::tags(['posts', 'featured'])
 ->put('post_1', $post, 600);

// Flush all "posts" cache
Cache::tags('posts')->flush();Code language: PHP (php)

Cache tags are useful for invalidating multiple related keys without clearing the entire
cache.

https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance
https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance
https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file/
https://1v0.net

Laravel Starter Kits

6 – Cache in Controllers & APIs
You can use caching directly in controllers to speed up API responses.

// app/Http/Controllers/PostController.php
public function index()
{
 $posts = Cache::remember('posts.all', 300, function () {
 return Post::with('author')->latest()->take(10)->get();
 });

 return response()->json($posts);
}Code language: PHP (php)

This caches the query for 5 minutes. APIs can serve thousands of requests without
hammering the database. For advanced query optimization, see How to Speed Up Laravel
with Database Indexing.

Wrapping Up
Caching is the easiest and most effective optimization in Laravel. File cache is simple but
limited, database cache works in multi-server setups but can be slower, and Redis
provides blazing-fast performance for high-traffic apps. Choose based on scale and
infrastructure. Combine caching with queues and Octane for best results.

https://1v0.net/blog/how-to-speed-up-laravel-with-database-indexing
https://1v0.net/blog/how-to-speed-up-laravel-with-database-indexing
https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file/
https://1v0.net

Laravel Starter Kits

What’s Next
10 Proven Ways to Optimize Laravel for High Traffic — overview of caching, queues,
and scaling strategies.
How to Use Laravel Queues for Faster Performance — offload heavy jobs to workers.
Optimizing Laravel for High Concurrency with Octane — complement caching with in-
memory server performance.

https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic
https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance
https://1v0.net/blog/optimizing-laravel-for-high-concurrency-with-octane
https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file/
https://1v0.net

