
Laravel Starter Kits

Creating a Role-Specific Dashboard in Laravel 12

In many applications, different users need different dashboards. For example, an admin
might see system statistics, a manager might see team performance, while a user only sees
their own activity. In Laravel 12, you can create role-specific dashboards using the
Spatie Permissions package and some conditional logic.

In this guide, we’ll build dashboards that automatically adapt based on the logged-in user’s
role. We’ll secure routes, load different views, and provide a clean UI for each role.

1 – Defining Roles
Before building dashboards, make sure your roles are defined with Spatie Permissions. For
example:

php artisan tinker

>>> Role::create(['name' => 'admin']);
>>> Role::create(['name' => 'manager']);
>>> Role::create(['name' => 'user']);Code language: CSS (css)

Assign roles to users when registering or via an admin UI. Example:

$user->assignRole('admin');Code language: PHP (php)

https://1v0.net/blog/creating-a-role-specific-dashboard-in-laravel-12/
https://1v0.net/blog/laravel-spatie-permissions-step-by-step-installation-setup
https://1v0.net/blog/creating-a-role-specific-dashboard-in-laravel-12/
https://1v0.net


Laravel Starter Kits

2 – Route Setup
We’ll use a single dashboard route that points to a controller. Middleware ensures only
authenticated users can access it.

// routes/web.php
use App\Http\Controllers\DashboardController;

Route::middleware(['auth'])->get('/dashboard',
[DashboardController::class, 'index'])->name('dashboard');Code language:
PHP (php)

3 – Dashboard Controller
The controller checks the user’s role and returns the correct view. This keeps logic
centralized.

// app/Http/Controllers/DashboardController.php
namespace App\Http\Controllers;

use Illuminate\Support\Facades\Auth;

class DashboardController extends Controller
{
    public function index()
    {
        $user = Auth::user();

        if ($user->hasRole('admin')) {
            return view('dashboards.admin');
        }

        if ($user->hasRole('manager')) {

https://1v0.net/blog/creating-a-role-specific-dashboard-in-laravel-12/
https://1v0.net


Laravel Starter Kits

            return view('dashboards.manager');
        }

        return view('dashboards.user');
    }
}Code language: PHP (php)

Now, each role gets its own dashboard view file.

4 – Creating Dashboard Views
Let’s create separate views for each role:

// resources/views/dashboards/admin.blade.php
@extends('layouts.app')

@section('content')
<div class="container">
  <h1>Admin Dashboard</h1>
  <p>System statistics and user management tools go here.</p>
</div>
@endsectionCode language: HTML, XML (xml)

// resources/views/dashboards/manager.blade.php
@extends('layouts.app')

@section('content')
<div class="container">
  <h1>Manager Dashboard</h1>
  <p>Team performance metrics and project controls go here.</p>
</div>
@endsectionCode language: HTML, XML (xml)

https://1v0.net/blog/creating-a-role-specific-dashboard-in-laravel-12/
https://1v0.net


Laravel Starter Kits

// resources/views/dashboards/user.blade.php
@extends('layouts.app')

@section('content')
<div class="container">
  <h1>User Dashboard</h1>
  <p>Your personal activity, notifications, and profile tools go
here.</p>
</div>
@endsectionCode language: HTML, XML (xml)

Each dashboard is independent, so you can customize the content for the needs of each role.

5 – Securing Role-Specific Pages
Sometimes you’ll want to restrict not just dashboards but also subpages. You can use
middleware or Blade directives for this.

// Example: restrict reports route to managers
Route::middleware(['auth','role:manager'])->get('/reports', function
() {
    return 'Reports Page';
});Code language: PHP (php)

// Example in Blade
@role('admin')
  <a href="/admin/settings">Settings</a>
@endroleCode language: HTML, XML (xml)

This ensures that only users with the correct roles see links and access routes.

https://1v0.net/blog/creating-a-role-specific-dashboard-in-laravel-12/
https://1v0.net


Laravel Starter Kits

Wrapping Up
We created a role-specific dashboard system in Laravel 12. Each user sees a different
dashboard based on their role, managed with Spatie Permissions. Routes are protected with
middleware, and Blade directives ensure the right UI is displayed. This approach provides a
tailored experience for each type of user while keeping security intact.

What’s Next
Building a Team Management System with Laravel Roles & Permissions
How to Give and Revoke Permissions to Users in Laravel
Laravel Roles vs Policies: Which One Should You Use?

https://1v0.net/blog/building-a-team-management-system-with-laravel-roles-and-permissions
https://1v0.net/blog/how-to-give-and-revoke-permissions-to-users-in-laravel
https://1v0.net/blog/laravel-roles-vs-policies-which-one-should-you-use
https://1v0.net/blog/creating-a-role-specific-dashboard-in-laravel-12/
https://1v0.net

