
Laravel Starter Kits

Debugging Laravel Applications with Ray and Telescope

Debugging is a critical part of building reliable Laravel applications. While dd() and
dump() are quick solutions, they don’t scale well for complex apps. Laravel offers powerful
debugging tools like Telescope for application-wide monitoring, and third-party tools like
Ray to simplify debugging during development. In this article, we’ll explore both tools, show
how to set them up, and walk through real-world debugging workflows.

Installing Ray for Debugging
composer require spatie/laravel-ray --devCode language: Bash (bash)

Ray is a desktop app by Spatie that displays debugging output in a clear, interactive
interface. Once installed, you can use the ray() helper function anywhere in your Laravel
app. Ray captures variables, queries, jobs, and more — without polluting your HTML
responses or logs.

Basic Usage

ray('Hello from Laravel');
ray($user);
ray($request->all());Code language: PHP (php)

This sends text, objects, or arrays to the Ray desktop client. It works like dd() but doesn’t
halt execution. You can also chain styles and colors to organize debugging output.

Debugging Queries with Ray

// In AppServiceProvider or a debug-only service provider
\Illuminate\Support\Facades\DB::listen(function ($query) {
 ray($query->sql, $query->bindings, $query->time);
});Code language: PHP (php)

https://1v0.net/blog/debugging-laravel-applications-with-ray-and-telescope/
https://myray.app
https://1v0.net/blog/debugging-laravel-applications-with-ray-and-telescope/
https://1v0.net

Laravel Starter Kits

Ray displays executed queries, bindings, and execution time. This makes query optimization
easier during development.

Debugging Jobs and Events

ray()->showJobs();
ray()->showEvents();Code language: PHP (php)

Ray can automatically show when jobs are dispatched or events are fired, helping you track
async flows in your app.

Installing and Using Laravel Telescope
composer require laravel/telescope --dev
php artisan telescope:install
php artisan migrateCode language: Bash (bash)

Telescope is Laravel’s official debugging assistant. It provides a dashboard at /telescope
where you can view requests, jobs, events, queries, logs, cache hits, and more. It’s
particularly powerful for tracking production issues when paired with access restrictions.

Tracking Requests and Responses

// Example: telescope shows request lifecycle
GET /posts/1
- Controller: PostController@show
- Queries: 2 (45ms)
- Response: 200 OKCode language: PHP (php)

The Requests tab in Telescope shows complete details about each incoming request,
including middleware, response time, and database queries executed during that request.

https://laravel.com/docs/telescope
https://1v0.net/blog/debugging-laravel-applications-with-ray-and-telescope/
https://1v0.net

Laravel Starter Kits

Monitoring Queries

Telescope logs all queries executed in your app, including N+1 query problems. It
highlights slow queries, so you can quickly identify bottlenecks.

Jobs, Events, and Cache

From the dashboard, you can see when jobs are dispatched, events are triggered, and cache
hits or misses occur. This visibility helps debug background tasks and performance issues.

Securing Telescope in Production
Telescope can expose sensitive information. Protect it with authorization gates:

// app/Providers/TelescopeServiceProvider.php
use Laravel\Telescope\Telescope;

Telescope::auth(function ($request) {
 return in_array($request->user()?->email, [
 'admin@example.com',
]);
});Code language: PHP (php)

This ensures that only authorized developers can access Telescope in production
environments. Always secure it before deployment.

https://1v0.net/blog/debugging-laravel-applications-with-ray-and-telescope/
https://1v0.net

Laravel Starter Kits

Ray vs Telescope: When to Use Each

Feature Ray Telescope
Scope Developer-focused debugging App-wide request monitoring

Best for Quick dumps, inspecting variables, dev
feedback Tracking queries, jobs, events, logs

UI Desktop client Web dashboard at /telescope

Environment Local development only Local + Production (with access
control)

Integration Simple ray() calls in code Automatic hooks into Laravel
internals

Use Ray for quick, developer-centric debugging. Use Telescope for request and system-wide
insights. Many teams run both in parallel: Ray locally, Telescope in staging/production.

Wrapping Up
Debugging effectively saves hours of guesswork. Ray is perfect for rapid feedback during
development, while Telescope gives you full visibility into requests, queries, and background
jobs. Together, they provide a powerful toolkit for debugging Laravel apps across
environments.

What’s Next
For further monitoring and debugging, check out these guides:

https://1v0.net/blog/debugging-laravel-applications-with-ray-and-telescope/
https://1v0.net

Laravel Starter Kits

Using Laravel Telescope to Debug Performance Issues
Query Performance Tuning in Laravel + MySQL
How to Speed Up Laravel with Database Indexing

https://1v0.net/blog/using-laravel-telescope-to-debug-performance-issues
https://1v0.net/blog/query-performance-tuning-in-laravel-mysql
https://1v0.net/blog/how-to-speed-up-laravel-with-database-indexing
https://1v0.net/blog/debugging-laravel-applications-with-ray-and-telescope/
https://1v0.net

