
Laravel Starter Kits

Eager Loading vs Lazy Loading in Laravel: Best
Practices

Eager Loading vs Lazy Loading in Laravel: Best
Practices
When working with Eloquent relationships, performance issues often appear because of the
“N+1” query problem. This happens when each record triggers additional queries for
related data. Laravel provides lazy loading and eager loading to control how related data
is fetched. In this article, you’ll learn the difference between them, see code examples, and
discover best practices for balancing performance and memory usage. We’ll also build a
simple profile UI that uses eager loading to display related posts efficiently.

1 – Understanding Lazy Loading
Lazy loading means related data is only loaded when you first access it. This keeps initial
queries lightweight but can trigger many additional queries if you loop through related data.

// app/Http/Controllers/UserController.php
namespace App\Http\Controllers;

use App\Models\User;

class UserController extends Controller
{
 public function index()
 {
 $users = User::all(); // single query for users

 foreach ($users as $user) {

https://1v0.net/blog/eager-loading-vs-lazy-loading-in-laravel-best-practices/
https://1v0.net/blog/eager-loading-vs-lazy-loading-in-laravel-best-practices/
https://1v0.net/blog/eager-loading-vs-lazy-loading-in-laravel-best-practices/
https://1v0.net

Laravel Starter Kits

 // Each call triggers a separate query (N+1 problem)
 $posts = $user->posts;
 }

 return view('users.index', compact('users'));
 }
}Code language: PHP (php)

Here, User::all() fetches all users. But every time $user->posts is accessed in the
loop, Laravel issues another query, leading to dozens or hundreds of queries—this is the
N+1 problem.

2 – Using Eager Loading
Eager loading solves the N+1 problem by fetching related data in advance with one extra
query. You use with() to tell Eloquent which relations to load.

// app/Http/Controllers/UserController.php (improved)
namespace App\Http\Controllers;

use App\Models\User;

class UserController extends Controller
{
 public function index()
 {
 // One query for users + one query for posts
 $users = User::with('posts')->get();

 return view('users.index', compact('users'));
 }
}Code language: PHP (php)

https://1v0.net/blog/eager-loading-vs-lazy-loading-in-laravel-best-practices/
https://1v0.net

Laravel Starter Kits

Instead of dozens of queries, Laravel now runs two: one for users and one for posts.
Relations are hydrated into each user automatically, eliminating N+1 overhead.

3 – Nested Eager Loading
You can eager load nested relations by passing arrays to with(). Useful for dashboards
that display multi-level data.

// Fetch users with posts and each post's comments
$users = User::with(['posts.comments'])->get();Code language: PHP (php)

This runs three queries: one for users, one for posts, and one for comments. Eloquent maps
everything together in memory, saving you from manually stitching queries.

4 – Eager Loading with Constraints
Use a closure inside with() to filter related data. This prevents loading unnecessary rows.

// Only load published posts for each user
$users = User::with(['posts' => function ($q) {
 $q->where('status', 'published');
}])->get();Code language: PHP (php)

Even though a user might have many posts in different statuses, only published ones are
pulled into memory. This keeps responses small and efficient.

https://1v0.net/blog/eager-loading-vs-lazy-loading-in-laravel-best-practices/
https://1v0.net

Laravel Starter Kits

5 – Lazy Eager Loading (N+1 Fix After the Fact)
If you’ve already loaded a collection without eager loading, you can still fix N+1 by calling
load() after the fact.

$users = User::all(); // only users
$users->load('posts'); // now posts are fetched in one extra
query

foreach ($users as $user) {
 // no extra queries here
 foreach ($user->posts as $post) {
 echo $post->title;
 }
}Code language: PHP (php)

load() attaches the related models after the initial query, solving the N+1 problem if you
forgot to use with() upfront.

6 – A Simple Profile UI Example
Let’s build a profile page that shows the user’s information and their posts. We’ll use eager
loading to prevent N+1 queries.

// app/Http/Controllers/ProfileController.php
namespace App\Http\Controllers;

https://1v0.net/blog/eager-loading-vs-lazy-loading-in-laravel-best-practices/
https://1v0.net

Laravel Starter Kits

use App\Models\User;

class ProfileController extends Controller
{
 public function show($id)
 {
 $user = User::with('posts')->findOrFail($id);
 return view('profile.show', compact('user'));
 }
}Code language: PHP (php)

This controller uses with('posts') so both the user and their posts are loaded in only two
queries.

<!-- resources/views/profile/show.blade.php -->
@extends('layouts.app')

@section('content')
<div class="container">
 <h1>{{ $user->name }}’s Profile</h1>
 <p class="text-muted">Email: {{ $user->email }}</p>

 <h3 class="mt-5 mb-3">Posts</h3>
 @foreach($user->posts as $post)
 <div class="card mb-3">
 <div class="card-body">
 <h5 class="card-title">{{ $post->title }}</h5>
 <p class="card-text">{{ Str::limit($post->body,120) }}</p>
 </div>
 </div>
 @endforeach
</div>
@endsectionCode language: PHP (php)

The Blade file prints user info and loops through their posts. Because we eager-loaded the
posts in the controller, this page will always use a constant two queries, no matter how
many posts exist.

https://1v0.net/blog/eager-loading-vs-lazy-loading-in-laravel-best-practices/
https://1v0.net

Laravel Starter Kits

Wrapping Up
Lazy loading is simple but can cause N+1 queries in loops. Eager loading (with()) fetches
related data in bulk and avoids performance pitfalls. Lazy eager loading (load()) is handy
when you already have a collection but need extra relations. By choosing the right loading
method, you keep queries efficient and your app fast—even with complex relationships.

What’s Next
Advanced Eloquent Relationships: Tips and Tricks
How to Use Eloquent API Resources for Clean APIs
Query Performance Tuning in Laravel + MySQL

https://1v0.net/blog/advanced-eloquent-relationships-tips-and-tricks
https://1v0.net/blog/how-to-use-eloquent-api-resources-for-clean-apis
https://1v0.net/blog/query-performance-tuning-in-laravel-mysql
https://1v0.net/blog/eager-loading-vs-lazy-loading-in-laravel-best-practices/
https://1v0.net

