1v02E

Handling File Uploads and Image Storage in Laravel

File uploads are one of the most common requirements in web applications. Laravel makes
handling file uploads and image storage secure, simple, and flexible. In this guide, we’ll
walk through uploading files, validating them, storing them locally or in cloud services like
Amazon S3, and building a simple UI to manage uploaded images.

Setting Up File Upload Routes and Controller

// routes/web.php
use App\Http\Controllers\FileController;

Route::get('/upload', [FileController::class, 'create'l);
Route::post('/upload', [FileController::class, 'store']);Code language:
PHP (php)

Here we define two routes: one for displaying the upload form and another for processing
file uploads. The FileController will handle the logic.

Controller for Handling Uploads

// app/Http/Controllers/FileController.php
namespace App\Http\Controllers;

use Illuminate\Http\Request;

Laravel Starter Kits

https://1v0.net/blog/handling-file-uploads-and-image-storage-in-laravel/
https://1v0.net/blog/handling-file-uploads-and-image-storage-in-laravel/
https://1v0.net

1v02E

use Illuminate\Support\Facades\Storage;

class FileController extends Controller

{

public function create()

{
return view('upload');

}

public function store(Request $request)

{
$validated = $request->validate([

‘file' => 'required|image|mimes:jpg,jpeg,png,gif|max:2048'
1);
$path = $request->file('file')->store('uploads', 'public');
return back()->with('success', 'File uploaded successfully!"')
->with('path', $path);
}

}Code language: PHP (php)

We validate that the uploaded file is an image with a maximum size of 2MB. The file is
stored in the storage/app/public/uploads directory using the public disk
configuration.

Blade Template for File Upload

<!-- resources/views/upload.blade.php -->
<!DOCTYPE html>
<html>
<head>
<title>File Upload</title>

Laravel Starter Kits

https://1v0.net/blog/handling-file-uploads-and-image-storage-in-laravel/
https://1v0.net

1v02E

</head>
<body>
@if(session('success'))
<p style="color:green;">{{ session('success') }}</p>

<img src="{{ asset('storage/' . session('path')) }}"
width="200">
@endif

<form action="/upload" method="POST" enctype="multipart/form-
data">
@csrf
<input type="file" name="file" required>
<button type="submit">Upload</button>
</form>

@error('file')
<p style="color:red;">{{ $message }}</p>
@enderror
</body>
</html>Code language: PHP (php)

This Blade template provides a simple upload form. If the upload succeeds, it displays the
uploaded image back to the user.

Storing Files in Amazon S3

// app/Http/Controllers/FileController.php
$path = $request->file('file')->store('uploads', 's3');Code language: PHP
(php)

By changing the second parameter to s3, files are stored in Amazon S3. Make sure you
configure your .env with the correct AWS ACCESS KEY_ ID, AWS SECRET ACCESS KEY,
and AWS BUCKET.

Laravel Starter Kits

https://1v0.net/blog/handling-file-uploads-and-image-storage-in-laravel/
https://1v0.net

1v02E

Listing Uploaded Files

// app/Http/Controllers/FileController.php

public function index()

{
$files = Storage::disk('public')->files('uploads');
return view('files.index', compact('files'));

}Code language: PHP (php)

With Storage: :disk('public')->files('uploads"') you can list all uploaded files in
a given directory. This makes it easy to create a file manager or gallery.

<!-- resources/views/files/index.blade.php -->

@foreach($files as $file)

{{ s$file }}
</1li>
@endforeach
Code language: PHP (php)

This Blade view displays thumbnails of uploaded images. You can extend it with delete
buttons, rename functionality, or even drag-and-drop reordering.

Laravel Starter Kits

https://1v0.net/blog/handling-file-uploads-and-image-storage-in-laravel/
https://1v0.net

1v02E

Security Considerations

» Always validate files with mimes and max rules.

» Never store user uploads in the public/ root without validation.
» Use signed URLs or policies for private file access.

e Limit maximum file size to avoid performance issues.

Following these security best practices helps prevent malicious uploads and keeps your app
safe.

Wrapping Up

Handling file uploads and image storage in Laravel is straightforward thanks to the
powerful Storage facade and built-in validation. You can support local, S3, or other drivers,
and even build a Ul to display uploaded files. By combining validation, secure storage, and
Blade templates, you can safely add file management features to any application.

What'’s Next

If you found file uploads useful, explore these guides to go further:

» Implementing Image Upload and Processing in Laravel
o How to Build a File Manager in Laravel

e Best Practices for Storing API Keys Securely in Laravel

Laravel Starter Kits

https://1v0.net/blog/implementing-image-upload-and-processing-in-laravel
https://1v0.net/blog/how-to-build-a-file-manager-in-laravel
https://1v0.net/blog/best-practices-for-storing-api-keys-securely-in-laravel
https://1v0.net/blog/handling-file-uploads-and-image-storage-in-laravel/
https://1v0.net

