
Laravel Starter Kits

How to Build a Search Function in Laravel with Scout
and Meilisearch

How to Build a Search Function in
Laravel with Scout and Meilisearch
Modern applications need fast, typo-tolerant, and relevant search. Laravel provides Scout, a
driver-based abstraction for full-text search engines, and Meilisearch, a blazing fast open-
source search engine. Together, they make it simple to build advanced search into your
Laravel app with minimal effort. In this guide, we’ll explain what Scout and Meilisearch are,
why they work well together, and how to set up a search feature with Blade UI and JSON
API responses.

What is Laravel Scout?
Laravel Scout is an official Laravel package that provides a simple, driver-based
abstraction for full-text search. Instead of writing raw queries against search engines, Scout
lets you call methods like Model::search() directly on your Eloquent models. Behind the
scenes, Scout syncs your models with the search index (Meilisearch, Algolia, Elasticsearch,
etc.).

Why use it? Because Scout handles indexing, updating, and deleting records automatically.
It integrates seamlessly with Eloquent, so you can focus on building features instead of
writing search infrastructure code.

https://1v0.net/blog/how-to-build-a-search-function-in-laravel-with-scout-and-meilisearch/
https://1v0.net/blog/how-to-build-a-search-function-in-laravel-with-scout-and-meilisearch/
https://1v0.net/blog/how-to-build-a-search-function-in-laravel-with-scout-and-meilisearch/
https://1v0.net

Laravel Starter Kits

What is Meilisearch?
Meilisearch is an open-source, fast, and developer-friendly search engine. It provides
features like typo tolerance, filters, relevancy ranking, and near-instant search results. It’s
lightweight, easy to host, and has great Laravel integration via Scout.

Why Meilisearch? Unlike SQL LIKE queries, Meilisearch is designed for real-time search
experiences, supports autocomplete, and ranks results by relevancy rather than simple
string matching. Perfect for blogs, e-commerce, and SaaS dashboards.

Why Use Scout with Meilisearch?
Scout acts as a bridge between Laravel and Meilisearch. Instead of learning Meilisearch’s
HTTP API directly, you work with clean Eloquent methods. Scout automatically syncs your
models to Meilisearch whenever they’re created, updated, or deleted.

Without Scout: You would need to call Meilisearch’s HTTP API manually for indexing
and updates.
With Scout: Just call Post::search('query') and get results instantly, with
Eloquent models returned.

https://1v0.net/blog/how-to-build-a-search-function-in-laravel-with-scout-and-meilisearch/
https://1v0.net

Laravel Starter Kits

Install and Configure Scout + Meilisearch
composer require laravel/scout meilisearch/meilisearch-phpCode language:
Bash (bash)

Publish the Scout config file:

php artisan vendor:publish --
provider="Laravel\Scout\ScoutServiceProvider"Code language: Bash (bash)

Update your .env file to use Meilisearch:

SCOUT_DRIVER=meilisearch
MEILISEARCH_HOST=http://127.0.0.1:7700
MEILISEARCH_KEY=masterKeyCode language: Bash (bash)

Run Meilisearch locally via Docker for development:

docker run -it --rm -p 7700:7700 getmeili/meilisearch:latestCode
language: Bash (bash)

Prepare Your Model for Search
Add the Searchable trait to your Eloquent model. This tells Scout to sync it with
Meilisearch.

// app/Models/Post.php
namespace App\Models;

use Illuminate\Database\Eloquent\Model;
use Laravel\Scout\Searchable;

class Post extends Model
{

https://1v0.net/blog/how-to-build-a-search-function-in-laravel-with-scout-and-meilisearch/
https://1v0.net

Laravel Starter Kits

 use Searchable;

 protected $fillable = ['title', 'content'];

 public function toSearchableArray(): array
 {
 return [
 'title' => $this->title,
 'content' => $this->content,
];
 }
}Code language: PHP (php)

Scout will automatically keep your search index in sync whenever a Post is created,
updated, or deleted.

Build a Search Controller and Blade Form
// app/Http/Controllers/SearchController.php
namespace App\Http\Controllers;

use App\Models\Post;
use Illuminate\Http\Request;

class SearchController extends Controller
{
 public function index(Request $request)
 {
 $query = $request->input('q');
 $results = $query ? Post::search($query)->get() : collect();

 return view('search.index', compact('results', 'query'));
 }

https://1v0.net/blog/how-to-build-a-search-function-in-laravel-with-scout-and-meilisearch/
https://1v0.net

Laravel Starter Kits

}Code language: PHP (php)

<!-- resources/views/search/index.blade.php -->
<form method="GET" action="/search">
 <input type="text" name="q" value="{{ $query }}" placeholder="Search
posts...">
 <button type="submit">Search</button>
</form>

 @foreach($results as $post)
 id }}">{{ $post->title }}
 @endforeach
Code language: PHP (php)

This simple Blade template lets users search posts and displays matching results instantly
from Meilisearch.

Expose a JSON API for Search
If you’re building a Vue or React frontend, you may want search results as JSON. Add an
API endpoint:

// routes/api.php
use App\Http\Controllers\SearchController;

Route::get('/search', [SearchController::class, 'api']);

// app/Http/Controllers/SearchController.php
public function api(Request $request)
{
 $query = $request->input('q');
 $results = $query ? Post::search($query)->paginate(10) :

https://1v0.net/blog/how-to-build-a-search-function-in-laravel-with-scout-and-meilisearch/
https://1v0.net

Laravel Starter Kits

collect();

 return response()->json($results);
}Code language: PHP (php)

Now, your JavaScript frontend can fetch /api/search?q=keyword and render results in
real-time with autocomplete or infinite scroll.

Scout + Meilisearch vs SQL LIKE Queries

Feature Scout + Meilisearch Raw SQL LIKE
Speed Fast, indexed search optimized for full-text Slow for large datasets
Relevancy Results ranked by relevance and typo tolerance Basic string match only
Features Autocomplete, filters, pagination, typo tolerance No advanced features
Integration Clean Eloquent search() API Manual SQL queries
Scalability Handles millions of records efficiently Poor scalability

This table shows why using Scout with Meilisearch is the modern approach compared to
raw SQL LIKE queries, especially for content-heavy applications.

Wrapping Up
In this article, you learned what Laravel Scout and Meilisearch are, why Scout is used as
a bridge to Meilisearch, and how to build a search function in Laravel with both Blade and
JSON API examples. Compared to SQL LIKE queries, Scout and Meilisearch deliver faster,
smarter, and more scalable search results. This setup is perfect for blogs, SaaS apps, and e-

https://1v0.net/blog/how-to-build-a-search-function-in-laravel-with-scout-and-meilisearch/
https://1v0.net

Laravel Starter Kits

commerce platforms where speed and relevancy matter.

What’s Next
Keep building your Laravel search and SEO stack with these related guides:

Implementing Full-Text Search in Laravel with MySQL
Creating JSON-LD Structured Data in Laravel for SEO
Laravel SEO Guide: Optimizing Meta, Slugs, and Sitemaps

https://1v0.net/blog/implementing-full-text-search-in-laravel-with-mysql
https://1v0.net/blog/creating-json-ld-structured-data-in-laravel-for-seo
https://1v0.net/blog/laravel-seo-guide-optimizing-meta-slugs-and-sitemaps
https://1v0.net/blog/how-to-build-a-search-function-in-laravel-with-scout-and-meilisearch/
https://1v0.net

