
Laravel Starter Kits

How to Build a Secure File Upload API in Laravel

How to Build a Secure File Upload API in Laravel
File uploads are a common attack vector. A secure API must validate file size and MIME
type, store files outside the public web root, generate safe filenames, optionally virus-scan,
and expose only signed URLs for downloads. In this guide you’ll create a hardened upload
API using Laravel’s validation, Storage, policies, and (optionally) a queue-powered malware
scan.

1 – Configure Storage & App Limits
We’ll store files on the local disk (outside public/) and expose them via signed routes.
Also ensure PHP upload limits are sane for your use case.

php artisan storage:link # only if you plan to serve some files via
'public' diskCode language: Bash (bash)

storage:link is not required for the local disk. If you later move to the public disk
(e.g., for images), the symlink lets the web server reach storage/app/public. For private
downloads we’ll stream files via a controller instead of direct access.

.env (review these) UPLOAD_MAX_FILESIZE=5M POST_MAX_SIZE=6M
FILESYSTEM_DISK=local

Match UPLOAD_MAX_FILESIZE and POST_MAX_SIZE to your needs (and your server’s
php.ini). Using the local disk keeps files private by default.

https://1v0.net/blog/how-to-build-a-secure-file-upload-api-in-laravel/
https://1v0.net/blog/how-to-build-a-secure-file-upload-api-in-laravel/
https://1v0.net

Laravel Starter Kits

2 – Migration & Model for Uploaded Files
We’ll track uploaded files in a table with original name, stored path, size, detected MIME,
and an owner. We’ll also keep a SHA-256 hash for deduplication and security audits.

// database/migrations/2025_08_27_000000_create_uploads_table.php
use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Support\Facades\Schema;

return new class extends Migration {
 public function up(): void {
 Schema::create('uploads', function (Blueprint $table) {
 $table->id();
$table->foreignId('user_id')->constrained()->cascadeOnDelete();
 $table->string('original_name');
 $table->string('disk')->default('local');
 $table->string('path'); // e.g.
uploads/2025/08/xyz.pdf
 $table->string('mime', 190); // detected server-
side
 $table->unsignedBigInteger('size'); // bytes
 $table->string('sha256', 64)->index(); // content hash
 $table->boolean('is_safe')->default(true); // set false
during scan if suspect
 $table->timestamps();
 });
 }
 public function down(): void {
 Schema::dropIfExists('uploads');
 }
};Code language: PHP (php)

https://1v0.net/blog/how-to-build-a-secure-file-upload-api-in-laravel/
https://1v0.net

Laravel Starter Kits

This schema captures essential metadata for each upload. The sha256 allows duplicate
detection and forensic checks. is_safe can be toggled by a scanner job to quarantine
suspicious files.

// app/Models/Upload.php
namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class Upload extends Model
{
 protected $fillable = [
'user_id','original_name','disk','path','mime','size','sha256','is_saf
e'
];

 public function user()
 {
 return $this->belongsTo(User::class);
 }
}Code language: PHP (php)

The model is straightforward, linking each upload to its owner. We’ll use this for
authorization and listing endpoints later.

3 – Validation Rules for Secure Uploads
Validate both size and type. Prefer mimetypes for server-side MIME detection and restrict
to a small allow-list.

/**
 * Example rules for PDFs and images only (5 MB max).
 */

https://1v0.net/blog/how-to-build-a-secure-file-upload-api-in-laravel/
https://1v0.net

Laravel Starter Kits

$rules = [
 'file' => [
 'required',
 'file',
 'max:5120', // KB => 5 MB
 'mimetypes:application/pdf,image/jpeg,image/png'
],
];Code language: PHP (php)

max is in kilobytes. Using mimetypes ensures the server-inspected MIME matches your
allow-list, which is safer than extension-only checks. Adjust the list to your needs.

4 – Upload Controller (Store Privately + Hash)
This controller validates the upload, stores it with a safe path, computes a hash, and records
metadata. We’ll protect the route with auth:sanctum.

// app/Http/Controllers/UploadApiController.php
namespace App\Http\Controllers;

use App\Models\Upload;
use Illuminate\Http\Request;
use Illuminate\Support\Facades\Storage;
use Illuminate\Support\Str;

class UploadApiController extends Controller
{
 public function store(Request $request)
 {
 $data = $request->validate([
 'file' =>
['required','file','max:5120','mimetypes:application/pdf,image/jpeg,im
age/png'],

https://1v0.net/blog/how-to-build-a-secure-file-upload-api-in-laravel/
https://1v0.net

Laravel Starter Kits

]);

 $file = $data['file'];

 // Generate a safe path (no user-supplied filename)
 $folder = 'uploads/'.now()->format('Y/m');
 $filename = Str::uuid().'.'.$file->guessExtension(); //
guessExtension() based on MIME
 $path = $file->storeAs($folder, $filename, disk: 'local'); //
private by default

 // Read contents for hashing (small/medium files). For very
large files, stream hash.
 $sha256 = hash_file('sha256',
Storage::disk('local')->path($path));

 $upload = Upload::create([
 'user_id' => $request->user()->id,
 'original_name' => $file->getClientOriginalName(),
 'disk' => 'local',
 'path' => $path,
 'mime' => $file->getMimeType(),
 'size' => $file->getSize(),
 'sha256' => $sha256,
 'is_safe' => true, // or false until a scanner job
verifies
]);

 return response()->json([
 'id' => $upload->id,
 'message' => 'Uploaded successfully',
], 201);
 }
}Code language: PHP (php)

Files are stored under storage/app/uploads/YYYY/MM with a UUID filename to avoid
collisions and path traversal issues. The DB row ties the file to the user and includes a
content hash for later integrity checks or deduplication.

https://1v0.net/blog/how-to-build-a-secure-file-upload-api-in-laravel/
https://1v0.net

Laravel Starter Kits

5 – Secure Download via Signed Route
Serve private files by streaming them from storage only if the signed URL is valid and the
user is authorized.

// app/Http/Controllers/DownloadController.php
namespace App\Http\Controllers;

use App\Models\Upload;
use Illuminate\Http\Request;
use Illuminate\Support\Facades\Gate;
use Illuminate\Support\Facades\Storage;

class DownloadController extends Controller
{
 public function show(Request $request, Upload $upload)
 {
 if (! $request->hasValidSignature()) {
 abort(403);
 }

 // Optional: owner-only access (or replace with a policy)
 if ($request->user()?->id !== $upload->user_id) {
 abort(403);
 }

 if (! $upload->is_safe) {
 abort(423, 'File is quarantined.');
 }

 return Storage::disk($upload->disk)->download($upload->path,
$upload->original_name);

https://1v0.net/blog/how-to-build-a-secure-file-upload-api-in-laravel/
https://1v0.net

Laravel Starter Kits

 }
}Code language: PHP (php)

hasValidSignature() ensures the URL wasn’t tampered with. We also restrict
downloads to the owner and block quarantined files. The Storage download() helper
streams the file with correct headers.

// Generate a temporary signed URL (e.g., in a controller or resource)
use Illuminate\Support\Facades\URL;

$signedUrl = URL::temporarySignedRoute(
 'uploads.show',
 now()->addMinutes(10),
 ['upload' => $upload->id]
);Code language: PHP (php)

A temporary signed URL expires after 10 minutes, reducing link leakage risks. Return this
from an API that lists a user’s files when they request a download.

6 – Routes (Protected Upload, Signed Download)
Separate API (token-protected) for uploads from signed web routes for downloads. You can
also expose a “list my files” endpoint.

// routes/api.php
use App\Http\Controllers\UploadApiController;
use Illuminate\Support\Facades\Route;

Route::middleware('auth:sanctum')->group(function () {
 Route::post('/uploads', [UploadApiController::class,
'store'])->name('api.uploads.store');
});Code language: PHP (php)

https://1v0.net/blog/how-to-build-a-secure-file-upload-api-in-laravel/
https://1v0.net

Laravel Starter Kits

The upload route is protected by Sanctum. Only authenticated clients can POST files. Add
rate limiting via the throttle middleware if needed for abuse control.

// routes/web.php
use App\Http\Controllers\DownloadController;
use Illuminate\Support\Facades\Route;

Route::get('/uploads/{upload}', [DownloadController::class, 'show'])
 ->middleware(['signed','auth'])
 ->name('uploads.show');Code language: PHP (php)

The download route requires a valid signature and an authenticated session. If you need
token-based downloads instead, put it under routes/api.php with auth:sanctum and
still use signed URLs.

7 – Optional: Antivirus Scan with a Queue Job
For higher security, queue a malware scan (e.g., ClamAV) right after upload and quarantine
the file until it’s cleared.

// app/Jobs/ScanUpload.php
namespace App\Jobs;

use App\Models\Upload;
use Illuminate\Bus\Queueable;
use Illuminate\Contracts\Queue\ShouldQueue;
use Illuminate\Support\Facades\Storage;

class ScanUpload implements ShouldQueue
{
 use Queueable;

 public function __construct(public int $uploadId) {}

https://1v0.net/blog/how-to-build-a-secure-file-upload-api-in-laravel/
https://1v0.net

Laravel Starter Kits

 public function handle(): void
 {
 $upload = Upload::find($this->uploadId);
 if (! $upload) return;

 $path = Storage::disk($upload->disk)->path($upload->path);

 // Pseudocode: replace with actual scanner integration
 // $clean = ClamAV::scan($path);
 $clean = true;

 $upload->update(['is_safe' => (bool) $clean]);
 }
}Code language: PHP (php)

This job loads the file from disk and runs a scan. If flagged, set is_safe to false so
downloads are blocked. Wire it in after the upload is created: dispatch(new
ScanUpload($upload->id));.

8 – UI: Minimal Upload Form with Progress
Here’s a tiny Blade page that uploads to the API using Axios, shows a progress bar, and
prints the result. Paste a Bearer token from your Sanctum login first.

<!-- resources/views/uploads/test.blade.php -->
@extends('layouts.app')

@section('content')
<div class="container">
 <h1>Secure Upload Test</h1>

 <div class="mb-3">
 <label class="form-label">Bearer Token</label>

https://1v0.net/blog/how-to-build-a-secure-file-upload-api-in-laravel/
https://1v0.net

Laravel Starter Kits

 <input id="token" type="text" class="form-control"
placeholder="Paste your token">
 </div>

 <div class="mb-3">
 <input id="file" type="file" class="form-control">
 </div>

 <div class="progress mb-3" style="height: 8px;">
 <div id="bar" class="progress-bar" role="progressbar"
style="width: 0%;"></div>
 </div>

 <button class="btn btn-theme" onclick="upload()">Upload</button>

 <pre id="result" class="mt-3"></pre>
</div>

<script
src="https://cdn.jsdelivr.net/npm/axios/dist/axios.min.js"></script>
<script>
function upload() {
 const token = document.getElementById('token').value;
 const file = document.getElementById('file').files[0];
 if (!file) { alert('Choose a file'); return; }

 const form = new FormData();
 form.append('file', file);

 axios.post('/api/uploads', form, {
 headers: { Authorization: `Bearer ${token}` },
 onUploadProgress: (evt) => {
 if (evt.total) {
 const percent = Math.round((evt.loaded / evt.total) * 100);
 document.getElementById('bar').style.width = percent + '%';
 }
 }
 }).then(res => {

https://1v0.net/blog/how-to-build-a-secure-file-upload-api-in-laravel/
https://1v0.net

Laravel Starter Kits

 document.getElementById('result').textContent =
JSON.stringify(res.data,null,2);
 }).catch(err => {
 const msg = err.response ?
JSON.stringify(err.response.data,null,2) : err.message;
 document.getElementById('result').textContent = msg;
 });
}
</script>
@endsectionCode language: HTML, XML (xml)

The UI posts the file to /api/uploads with a Bearer token. The progress bar updates as
the browser streams the file. On success you’ll get the upload ID to fetch a signed download
link later.

Wrapping Up
You built a secure upload pipeline: strict validation, private storage, hashed contents,
owner-based authorization, signed downloads, and an optional antivirus scan with a queue
job. This approach prevents unsafe files from being served publicly and gives you full
control over who can access which file and for how long.

What’s Next
Using Laravel Passport for Advanced API Authentication
How to Add JWT Authentication to Laravel APIs
Integrating Laravel with Third-Party APIs (Mail, SMS, Payment)

https://1v0.net/blog/using-laravel-passport-for-advanced-api-authentication
https://1v0.net/blog/how-to-add-jwt-authentication-to-laravel-apis
https://1v0.net/blog/integrating-laravel-with-third-party-apis-mail-sms-payment
https://1v0.net/blog/how-to-build-a-secure-file-upload-api-in-laravel/
https://1v0.net

