
Laravel Starter Kits

How to Generate SEO-Friendly URLs and Slugs in
Laravel
Clean and descriptive URLs are essential for SEO. Instead of numeric IDs like /posts/123,
you should use slugs like /posts/my-first-laravel-app. In this article, we’ll explore
how to generate slugs automatically, prevent duplicates, allow manual editing in forms, and
integrate slugs into routes and controllers.

Auto-Generating Slugs with booted()
Laravel’s model events make it easy to generate slugs whenever a record is created. You
can use booted() with the creating event.

// app/Models/Post.php
namespace App\Models;

use Illuminate\Database\Eloquent\Model;
use Illuminate\Support\Str;

class Post extends Model
{
    protected static function booted()
    {
        static::creating(function ($post) {
            $post->slug = Str::slug($post->title);
        });
    }
}Code language: PHP (php)

Whenever a new post is created, its title is converted to a slug. For example: “My First
Laravel App” → my-first-laravel-app.

https://1v0.net/blog/how-to-generate-seo-friendly-urls-and-slugs-in-laravel/
https://1v0.net/blog/how-to-generate-seo-friendly-urls-and-slugs-in-laravel/
https://1v0.net/blog/how-to-generate-seo-friendly-urls-and-slugs-in-laravel/
https://1v0.net


Laravel Starter Kits

Performance Note on booted()

The booted() method is called once per request, registering model event listeners. The
slug logic itself only runs on the creating event (when saving new records). Simply
retrieving or initializing a model does not regenerate the slug — this keeps performance
safe.

Preventing Duplicate Slugs
Duplicate slugs cause routing conflicts and SEO issues. For example, two posts titled “Hello
World” would both generate hello-world. A better approach is to check existing slugs and
append a number if needed.

// app/Models/Post.php
protected static function booted()
{
    static::creating(function ($post) {
        $base = Str::slug($post->title);

        // If slug is free, use it directly
        if (! static::where('slug', $base)->exists()) {
            $post->slug = $base;
            return;
        }

        // Otherwise compute next suffix
        $pattern = '^' . preg_quote($base, '/') . '(-[0-9]+)?$';

        $maxSuffix = static::whereRaw('slug REGEXP ?', [$pattern])
            ->selectRaw("
                MAX(
                    CASE

https://1v0.net/blog/how-to-generate-seo-friendly-urls-and-slugs-in-laravel/
https://1v0.net


Laravel Starter Kits

                        WHEN slug = ? THEN 0
                        ELSE CAST(SUBSTRING_INDEX(slug, '-', -1) AS
UNSIGNED)
                    END
                ) AS max_suffix
            ", [$base])
            ->value('max_suffix');

        $post->slug = $base . '-' . (((int) $maxSuffix) + 1);
    });
}Code language: PHP (php)

With this strategy, your slugs remain unique:

hello-world
hello-world-1
hello-world-2

For extra safety, add a unique index on the slug column at the database level. This
prevents race conditions under high concurrency.

$table->string('slug')->unique();Code language: PHP (php)

Using Slugs in Routes and Controllers
// routes/web.php
use App\Http\Controllers\PostController;

Route::get('/posts/{post:slug}', [PostController::class, 'show']);Code
language: PHP (php)

// app/Http/Controllers/PostController.php
namespace App\Http\Controllers;

https://1v0.net/blog/how-to-generate-seo-friendly-urls-and-slugs-in-laravel/
https://1v0.net


Laravel Starter Kits

use App\Models\Post;

class PostController extends Controller
{
    public function show(Post $post)
    {
        return view('posts.show', compact('post'));
    }
}Code language: PHP (php)

By using {post:slug}, Laravel automatically looks up posts by their slug instead of their
ID.

Allowing Manual Slug Editing in Forms
Sometimes you want editors to override the auto-generated slug. Add a slug field in your
form.

<form action="{{ route('posts.store') }}" method="POST">
  @csrf
  <label>Title</label>
  <input type="text" name="title" id="title">

  <label>Slug (optional)</label>
  <input type="text" name="slug" id="slug">

  <button type="submit">Save</button>
</form>Code language: PHP (php)

In your model’s creating event, only auto-generate the slug if it wasn’t provided:

if (empty($post->slug)) {
    $post->slug = Str::slug($post->title);

https://1v0.net/blog/how-to-generate-seo-friendly-urls-and-slugs-in-laravel/
https://1v0.net


Laravel Starter Kits

}Code language: PHP (php)

UI Enhancement: Slug Preview with JavaScript
For better UX, you can show a live preview of the slug as the user types the title.

<script>
document.getElementById('title').addEventListener('input', function ()
{
    let slug = this.value.toLowerCase()
        .replace(/[^a-z0-9]+/g, '-')
        .replace(/(^-|-$)/g, '');
    document.getElementById('slug').value = slug;
});
</script>Code language: JavaScript (javascript)

This script converts the title into a slug format on the fly and updates the slug input field.

Best Practices for Slugs
Keep them short: Ideally under 60 characters.
Use lowercase only: Prevents duplicate variations.
Avoid stop words: Remove words like “and,” “the,” “of” unless needed.
Hyphens not underscores: Use - as Google prefers it over _.
Unique per resource: Always enforce uniqueness in DB with a unique index.
Match content keywords: Include relevant keywords for better SEO ranking.

https://1v0.net/blog/how-to-generate-seo-friendly-urls-and-slugs-in-laravel/
https://1v0.net


Laravel Starter Kits

Good vs Bad Slug Examples

Bad Slug Good Slug Why

Post_123!!! my-first-laravel-app
Readable,
keyword-rich,
clean format.

My First Laravel App my-first-laravel-app

Lowercase +
hyphens
instead of
spaces.

laravel---guide laravel-guide
No
unnecessary
dashes.

the-best-guide-to-laravel-php-framework laravel-guide
Shorter and
more focused
on keywords.

This table shows how simple adjustments make slugs much cleaner for both SEO and users.

Wrapping Up
SEO-friendly slugs make your URLs readable, keyword-rich, and unique. You learned how to
auto-generate slugs, prevent duplicates with an efficient strategy, allow manual overrides in
forms, preview slugs in the UI, follow best practices, and identify good vs bad slug patterns.
Combined with clean routes, this gives your Laravel app a strong SEO foundation.

https://1v0.net/blog/how-to-generate-seo-friendly-urls-and-slugs-in-laravel/
https://1v0.net


Laravel Starter Kits

What’s Next
Continue improving your Laravel SEO setup with these related guides:

Laravel SEO Guide: Optimizing Meta, Slugs, and Sitemaps
Adding Meta Tags and Open Graph Data Dynamically in Laravel
How to Build an XML Sitemap Generator in Laravel

https://1v0.net/blog/laravel-seo-guide-optimizing-meta-slugs-and-sitemaps
https://1v0.net/blog/adding-meta-tags-and-open-graph-data-dynamically-in-laravel
https://1v0.net/blog/how-to-build-an-xml-sitemap-generator-in-laravel
https://1v0.net/blog/how-to-generate-seo-friendly-urls-and-slugs-in-laravel/
https://1v0.net

