1v02E

How to L.og and Monitor Errors in Laravel with
Monolog

Error logging is one of the most important parts of maintaining a reliable Laravel
application. While simple dd () statements can help in development, production apps need
structured, configurable, and persistent logs. Laravel uses Monolog under the hood, which
is a powerful logging library that supports multiple channels, handlers, and integrations. In
this article, we’ll learn how to configure Monolog, log errors to different destinations,
monitor logs in production, and apply best practices for scaling logging in real-world
projects.

Laravel Logging Basics

Laravel provides a unified Log facade for writing logs. By default, logs are written to
storage/logs/laravel. log. The logging configuration is located in
config/logging.php and defines channels like stack, single, daily, slack, and
more.

use Illuminate\Support\Facades\Log;

Log::info('User visited dashboard.');
Log::warning('Payment processing is slow.');
Log::error('Unable to connect to database.');Code language: PHP (php)

Each log entry has a level (info, warning, error, critical, etc.) defined by the RFC
5424 standard. This helps filter logs when monitoring large systems.

Laravel Starter Kits

https://1v0.net/blog/how-to-log-and-monitor-errors-in-laravel-with-monolog/
https://1v0.net/blog/how-to-log-and-monitor-errors-in-laravel-with-monolog/
https://www.rfc-editor.org/rfc/rfc5424
https://www.rfc-editor.org/rfc/rfc5424
https://1v0.net/blog/how-to-log-and-monitor-errors-in-laravel-with-monolog/
https://1v0.net

1v02E

Configuring Log Channels

Channels define where and how logs are stored. Laravel supports multiple channels at once
using the stack driver. Common drivers include single (one file), daily (rotating logs),
slack, syslog, and custom Monolog handlers.

// config/logging.php
return [
‘default' => env('LOG CHANNEL', 'stack'),

'channels' => |
'stack' => |
'driver' => 'stack',
‘channels' => ['daily', 'slack'],
1,

'daily' => [
'driver' => 'daily’,
'path' => storage path('logs/laravel.log'),
‘level’ => 'debug’',
'days' => 14,
1,

'slack' => [
'driver' => 'slack',
‘url' => env('LOG SLACK WEBHOOK URL'),
'level' => 'critical’',

I,

1,
] ; Code language: PHP (php)

This configuration sends all logs to daily files and sends critical level errors to Slack.
This way, developers are alerted instantly for severe issues, while other logs are stored for

Laravel Starter Kits

https://1v0.net/blog/how-to-log-and-monitor-errors-in-laravel-with-monolog/
https://1v0.net

1v02E

analysis.

Custom Monolog Handlers

Sometimes you want to send logs to third-party services (like Logstash, Graylog, or
CloudWatch). Laravel lets you define custom Monolog handlers by extending tap in

logging.php.

// app/Logging/CustomizeFormatter.php
namespace App\Logging;

use Monolog\Formatter\LineFormatter;

class CustomizeFormatter
{
public function invoke($logger)
{
foreach ($logger->getHandlers() as $handler) {
$handler->setFormatter(new LineFormatter(
"[%datetimeSs] %channel%.%level name%: Smessage%
scontext% %extra%s\n"
));
}

}
}Code language: PHP (php)

Then register it in config/logging. php:

‘daily' => [
'driver' => 'daily’,
‘path' => storage path('logs/laravel.log'),
‘level’ => 'debug’',
'days' => 14,

Laravel Starter Kits

https://1v0.net/blog/how-to-log-and-monitor-errors-in-laravel-with-monolog/
https://1v0.net

1v02E

‘tap' => [App\Logging\CustomizeFormatter::class],
],Code language: PHP (php)

This allows you to format log messages consistently across all environments, making
parsing easier for log aggregators.

Context and Structured Logging

Logs become far more useful when you include structured context data, like user IDs,
request IDs, or payloads.

Log::error('Order failed to process.', [
‘order id' => $order->id,
‘user id' => $order->user id,

1) ; Code language: PHP (php)

This context can be filtered in monitoring tools, making it easier to trace specific errors and
build dashboards.

Monitoring Logs in Production

For production, logs should be centralized and monitored. Common approaches include:

» Slack / Teams Alerts for critical errors.

» Log Aggregators (ELK stack, Graylog, Datadog, Papertrail, Sentry).
e Cloud Logging (AWS CloudWatch, GCP Logging).

e Custom Dashboards with daily log summaries.

Laravel Starter Kits

https://1v0.net/blog/how-to-log-and-monitor-errors-in-laravel-with-monolog/
https://1v0.net

1v02E

By centralizing logs, you can set up alerting, search logs by metadata, and ensure
compliance for audits.

Best Practices for Logging

» Use appropriate log levels (info for events, warning for recoverable issues, error
for failures).

* Rotate logs with the daily driver to avoid large files.

» Don’t log sensitive data (passwords, credit card numbers).

 Include context like user ID, request ID, or environment.

* Integrate with alerting tools for critical errors.

Monolog vs Telescope vs Ray

Tool Best For Environment Output
Monolog Persistent error logging Local + Production gllloejd Slack, Syslog,
Telescope Monitoring requests, jobs, queries Local + Staging =~ Web dashboard
Ray Quick, interactive debugging Local Development Desktop app

Monolog is your backbone for logging across environments. Ray and Telescope are great
companions for debugging and monitoring, but Monolog handles the long-term storage and
integration with external systems.

Laravel Starter Kits

https://1v0.net/blog/how-to-log-and-monitor-errors-in-laravel-with-monolog/
https://1v0.net

1v02E

Wrapping Up

Laravel’s Monolog integration makes logging flexible and production-ready. We covered
basic logging, channel configuration, custom handlers, structured context, monitoring, and
best practices. Combined with Ray and Telescope, Monolog gives you full visibility into your
app across local development and production.

What'’s Next

Continue learning about monitoring and optimization with these articles:

» Using Laravel Telescope to Debug Performance Issues
* Debugging Laravel Applications with Ray and Telescope

* Query Performance Tuning in Laravel + MySQL

Laravel Starter Kits

https://1v0.net/blog/using-laravel-telescope-to-debug-performance-issues
https://1v0.net/blog/debugging-laravel-applications-with-ray-and-telescope
https://1v0.net/blog/query-performance-tuning-in-laravel-mysql
https://1v0.net/blog/how-to-log-and-monitor-errors-in-laravel-with-monolog/
https://1v0.net

