
Laravel Starter Kits

How to Prevent CSRF, XSS, and SQL Injection in
Laravel Apps
Every modern web application faces security threats. Three of the most common and
dangerous ones are CSRF (Cross-Site Request Forgery), XSS (Cross-Site Scripting),
and SQL Injection. If left unprotected, attackers can hijack sessions, steal data, or even
take control of your application.

The good news: Laravel 12 comes with built-in protection against these attacks. In this
article, we’ll break down what each attack means, why it’s dangerous, and how to prevent it
in Laravel step by step. You’ll also see code examples and best practices so you can secure
your apps confidently.

1 – What is CSRF (Cross-Site Request Forgery)?
CSRF happens when an attacker tricks a logged-in user into making an unwanted request
to your app. For example, they might embed a hidden form on a malicious website that
submits a POST request to your app’s /delete-account endpoint. If the user is logged in,
the request could succeed — unless you protect against it.

How Laravel Prevents CSRF

Laravel includes a CSRF token with every form. This unique token must match the one
stored in the session; otherwise, the request is rejected.

<!-- Example Blade form with CSRF protection -->
<form method="POST" action="/profile/update">
 @csrf
 <input type="text" name="name">
 <button type="submit">Save</button>

https://1v0.net/blog/how-to-prevent-csrf-xss-and-sql-injection-in-laravel-apps/
https://1v0.net/blog/how-to-prevent-csrf-xss-and-sql-injection-in-laravel-apps/
https://1v0.net/blog/how-to-prevent-csrf-xss-and-sql-injection-in-laravel-apps/
https://1v0.net

Laravel Starter Kits

</form>Code language: PHP (php)

The @csrf directive generates a hidden token field. Laravel validates this automatically,
protecting you from CSRF attacks.

Best Practices for CSRF Protection

Always include @csrf in forms.
For SPAs, send the CSRF token in the X-CSRF-TOKEN or X-XSRF-TOKEN header.
Do not disable CSRF middleware unless absolutely necessary.

2 – What is XSS (Cross-Site Scripting)?
XSS allows attackers to inject malicious JavaScript into your app. For example, if you
display user-submitted comments without escaping, an attacker could inject:

<script>alert('Hacked!')</script>Code language: HTML, XML (xml)

If another user loads the page, the script executes in their browser. This could be used to
steal cookies, capture keystrokes, or redirect users to malicious sites.

How Laravel Prevents XSS

By default, Laravel escapes all Blade output. For example:

{{ $comment }}Code language: PHP (php)

If $comment contains <script>alert('XSS')</script>, Laravel will escape it to:

<script>alert('XSS')</script>Code language: HTML, XML (xml)

This prevents execution. If you want to render HTML, you must explicitly use {!!
$comment !!} — but do this only with trusted content.

https://1v0.net/blog/how-to-prevent-csrf-xss-and-sql-injection-in-laravel-apps/
https://1v0.net

Laravel Starter Kits

Best Practices for XSS Protection

Keep default escaping (use {{ }} not {!! !!}).
Sanitize user input before displaying it.
Use libraries like DOMPurify on frontend if you must allow limited HTML.

3 – What is SQL Injection?
SQL Injection happens when user input is inserted directly into SQL queries without
proper escaping. For example:

// ❌ Vulnerable raw query
$user = DB::select("SELECT * FROM users WHERE email = '$email'");Code
language: PHP (php)

If an attacker sets $email to ' OR 1=1 --, the query becomes:

SELECT * FROM users WHERE email = '' OR 1=1 --'Code language: JavaScript
(javascript)

This would return all users — a catastrophic data leak.

How Laravel Prevents SQL Injection

Laravel’s Eloquent ORM and Query Builder use PDO parameter binding, which
automatically escapes input values:

// ✅ Safe query with parameter binding
$user = DB::table('users')
 ->where('email', $email)
 ->first();Code language: PHP (php)

This ensures user input never breaks SQL syntax, eliminating SQL injection risks.

https://1v0.net/blog/how-to-prevent-csrf-xss-and-sql-injection-in-laravel-apps/
https://1v0.net

Laravel Starter Kits

Best Practices for SQL Injection Prevention

Always use Eloquent or Query Builder instead of raw queries.
If raw queries are unavoidable, use bindings: DB::select('... where email =
?', [$email]).
Validate and sanitize inputs before using them in queries.

Wrapping Up
We covered the three most common web attacks: CSRF, XSS, and SQL Injection. Laravel 12
protects you against these by default, but only if you use its features correctly. Always
include @csrf in forms, let Blade escape your output, and stick to Eloquent or Query
Builder for database access. Combine these best practices, and your app will already be
resilient against many real-world threats.

What’s Next
How to Expire User Sessions Automatically in Laravel — strengthen security with
session timeouts.
Implementing Two-Factor Authentication in Laravel — add another layer of login
protection.
Best Practices for Storing API Keys Securely in Laravel — handle secrets the right
way.

https://1v0.net/blog/how-to-expire-user-sessions-automatically-in-laravel
https://1v0.net/blog/implementing-two-factor-authentication-in-laravel
https://1v0.net/blog/best-practices-for-storing-api-keys-securely-in-laravel
https://1v0.net/blog/how-to-prevent-csrf-xss-and-sql-injection-in-laravel-apps/
https://1v0.net

