
Laravel Starter Kits

How to Restrict Page Access by Role in Laravel 12

When building modern web applications, controlling who can see what is just as important
as authentication. Not all users should have the same level of access — for example, an
admin may need to manage users, while regular users should only see their own content.
This is where Role-Based Access Control (RBAC) comes in.

In this tutorial, you’ll learn how to restrict page access by role in Laravel 12. We’ll
cover what roles and permissions are, how to create a simple role system, how to assign
roles to users, and how to protect routes and pages so that only authorized users can see
them.

1 – What are Roles and Permissions?
Role: A role represents a group of permissions that can be assigned to a user. Examples
include admin, editor, or user.

Permission: A permission defines what an account is allowed to do, such as edit-post or
delete-user. Roles usually contain multiple permissions.

By combining them, you can control what different users can access in your Laravel 12 app.
In this guide, we’ll implement a basic version without external packages, so you understand
the inner workings.

https://1v0.net/blog/how-to-restrict-page-access-by-role-in-laravel-12/
https://1v0.net/blog/how-to-restrict-page-access-by-role-in-laravel-12/
https://1v0.net

Laravel Starter Kits

2 – Prerequisites
A fresh Laravel 12 project (see our setup guide)
Basic authentication already working (see our Laravel auth guide)
A database with the users table ready

3 – Update the Users Table with a Role Column
We’ll keep things simple by adding a role column directly to the users table. Later, you
can expand this into a full permissions table if needed.

php artisan make:migration add_role_to_users_table --table=usersCode
language: Bash (bash)

// database/migrations/xxxx_xx_xx_xxxxxx_add_role_to_users_table.php
use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Support\Facades\Schema;

return new class extends Migration {
 public function up(): void {
 Schema::table('users', function (Blueprint $table) {
 $table->string('role')->default('user');
 });
 }

 public function down(): void {
 Schema::table('users', function (Blueprint $table) {
 $table->dropColumn('role');
 });
 }
};Code language: PHP (php)

https://1v0.net/blog/setting-up-fresh-laravel-12-project
https://1v0.net/blog/how-to-add-authentication-in-laravel-12-without-fortify
https://1v0.net/blog/how-to-restrict-page-access-by-role-in-laravel-12/
https://1v0.net

Laravel Starter Kits

This migration adds a new role field with a default value of user. That means anyone who
registers gets the “user” role automatically, unless you assign them another one (like
“admin”).

4 – Middleware for Role Protection
To restrict access, we’ll create a custom middleware that checks if the current user has the
required role.

php artisan make:middleware RoleMiddlewareCode language: Bash (bash)

// app/Http/Middleware/RoleMiddleware.php
namespace App\Http\Middleware;

use Closure;
use Illuminate\Support\Facades\Auth;

class RoleMiddleware
{
 public function handle($request, Closure $next, $role)
 {
 if (!Auth::check() || Auth::user()->role !== $role) {
 abort(403, 'Unauthorized');
 }
 return $next($request);
 }
}Code language: PHP (php)

This middleware compares the user’s role column with the role required. If it doesn’t
match, we abort with a 403 (Forbidden).

Now register the middleware in app/Http/Kernel.php:

https://1v0.net/blog/how-to-restrict-page-access-by-role-in-laravel-12/
https://1v0.net

Laravel Starter Kits

// app/Http/Kernel.php
protected $routeMiddleware = [
 // ...
 'role' => \App\Http\Middleware\RoleMiddleware::class,
];Code language: PHP (php)

5 – Protecting Routes by Role
Now that the middleware is registered, apply it to routes. For example, let’s protect an
admin dashboard so only users with the admin role can access it.

// routes/web.php
Route::get('/admin', function () {
 return view('admin.dashboard');
})->middleware(['auth','verified','role:admin']);Code language: PHP (php)

Here, we stacked three middleware: auth (user must be logged in), verified (user must
have confirmed email), and role:admin (user must be an admin). Any unauthorized user
will see a 403 error automatically.

6 – Adding Role Selection in the UI
If you want to let an admin assign roles via the UI, add a simple form. For example, let’s
create a form to update a user’s role:

<!-- resources/views/admin/edit-user.blade.php -->
@extends('layouts.app')

https://1v0.net/blog/how-to-restrict-page-access-by-role-in-laravel-12/
https://1v0.net

Laravel Starter Kits

@section('content')
<div class="container">
 <h2>Edit User Role</h2>
 <form method="POST" action="{{ route('admin.users.update', $user)
}}">
 @csrf
 @method('PUT')
 <div class="mb-3">
 <label class="form-label">Role</label>
 <select name="role" class="form-control">
 <option value="user" {{ $user->role==='user'?'selected':''
}}>User</option>
 <option value="admin" {{ $user->role==='admin'?'selected':''
}}>Admin</option>
 </select>
 </div>
 <button class="btn btn-primary">Update Role</button>
 </form>
</div>
@endsectionCode language: PHP (php)

This gives administrators a dropdown to assign user or admin. You can extend this idea
with a dedicated roles table for more complex scenarios.

7 – Common Errors & Fixes
403 error even for admins: Ensure the role column has the correct value and your
middleware is spelled correctly.
Middleware not working: Double-check that you registered the middleware alias in
Kernel.php.
New users can’t access pages: Remember that the default role is user. If you want
new admins, set their role after registration.

https://1v0.net/blog/how-to-restrict-page-access-by-role-in-laravel-12/
https://1v0.net

Laravel Starter Kits

Wrapping Up
You’ve successfully restricted pages by role in Laravel 12. We started with a simple role
column, created a custom RoleMiddleware, and applied it to routes. We also built a small
UI for admins to change user roles. This approach is simple and great for beginners; as your
app grows, you might switch to a package like Spatie Permissions for more advanced
control.

What’s Next
Laravel Spatie Permissions: Step-by-Step Installation & Setup — learn the professional
way of handling roles.
Creating a User-Friendly Roles & Permissions UI in Laravel — manage roles and
permissions directly in the dashboard.
How to Give and Revoke Permissions to Users in Laravel — control access
dynamically.

https://1v0.net/blog/laravel-spatie-permissions-step-by-step-installation-setup
https://1v0.net/blog/creating-a-user-friendly-roles-permissions-ui-in-laravel
https://1v0.net/blog/how-to-give-and-revoke-permissions-to-users-in-laravel
https://1v0.net/blog/how-to-restrict-page-access-by-role-in-laravel-12/
https://1v0.net

