
Laravel Starter Kits

How to Send Emails in Laravel with SMTP, Mailgun,
and Postmark

How to Send Emails in Laravel with SMTP, Mailgun,
and Postmark
Sending emails is a core feature for many applications—whether it’s delivering account
confirmations, password reset links, or notifications. Laravel 12 makes email delivery simple
with its built-in Mail system and support for multiple drivers such as SMTP, Mailgun, and
Postmark. In this guide, you’ll learn how to configure each driver, send your first email,
use a mailable inside a controller, trigger emails from events, and test email delivery in your
project.

Configuring SMTP in Laravel
SMTP (Simple Mail Transfer Protocol) is one of the most common ways to send emails.
Laravel provides an SMTP driver out of the box. Open your .env file and add the following
configuration:

MAIL_MAILER=smtp
MAIL_HOST=smtp.mailtrap.io
MAIL_PORT=587
MAIL_USERNAME=your_smtp_username
MAIL_PASSWORD=your_smtp_password
MAIL_ENCRYPTION=tls
MAIL_FROM_ADDRESS=no-reply@example.com
MAIL_FROM_NAME="My App"Code language: Bash (bash)

This sample uses Mailtrap for safe testing. In production, replace with your provider (e.g.,
Gmail SMTP, SendGrid). MAIL_FROM_* values define the default sender for outgoing mail.

https://1v0.net/blog/how-to-send-emails-in-laravel-with-smtp-mailgun-and-postmark/
https://1v0.net/blog/how-to-send-emails-in-laravel-with-smtp-mailgun-and-postmark/
https://1v0.net/blog/how-to-send-emails-in-laravel-with-smtp-mailgun-and-postmark/
https://1v0.net

Laravel Starter Kits

Sending Emails with Mailables
Laravel uses Mailables to structure, render, and send emails. Generate one with Markdown
support:

php artisan make:mail WelcomeMail --markdown=emails.welcomeCode language:
Bash (bash)

This command creates a mailable and a Markdown Blade view so you can style emails
quickly and consistently.

namespace App\Mail;

use Illuminate\Bus\Queueable;
use Illuminate\Mail\Mailable;
use Illuminate\Queue\SerializesModels;

class WelcomeMail extends Mailable
{
 use Queueable, SerializesModels;

 public $user;

 public function __construct($user)
 {
 $this->user = $user;
 }

 public function build()
 {
 return $this->subject('Welcome to My App')
 ->markdown('emails.welcome')
 ->with([

https://1v0.net/blog/how-to-send-emails-in-laravel-with-smtp-mailgun-and-postmark/
https://1v0.net

Laravel Starter Kits

 'name' => $this->user->name,
]);
 }
}Code language: PHP (php)

build() sets the subject, selects the Markdown template, and passes data (name) to the
view for personalization.

Using a Mailable Inside a Controller
Send the WelcomeMail right after user registration from your controller:

namespace App\Http\Controllers;

use App\Mail\WelcomeMail;
use App\Models\User;
use Illuminate\Http\Request;
use Illuminate\Support\Facades\Mail;

class RegisterController extends Controller
{
 public function store(Request $request)
 {
 $user = User::create($request->validate([
 'name' => 'required|string|max:255',
 'email' => 'required|email|unique:users',
 'password' => 'required|min:8'
]));

 Mail::to($user->email)->send(new WelcomeMail($user));

 return redirect('/home')->with('success', 'Account created and
welcome email sent!');

https://1v0.net/blog/how-to-send-emails-in-laravel-with-smtp-mailgun-and-postmark/
https://1v0.net

Laravel Starter Kits

 }
}Code language: PHP (php)

This keeps the flow simple: create the user, then send the email. For larger apps, consider
events to decouple email logic from controllers.

Using a Mailable with Events
Events and listeners separate concerns and make registration extensible (send email, log
analytics, etc.). Generate an event and a listener:

php artisan make:event UserRegistered
php artisan make:listener SendWelcomeEmail --event=UserRegisteredCode
language: Bash (bash)

These commands scaffold a UserRegistered event and a SendWelcomeEmail listener
that will react to the event.

// app/Events/UserRegistered.php
namespace App\Events;

use App\Models\User;
use Illuminate\Foundation\Events\Dispatchable;
use Illuminate\Queue\SerializesModels;

class UserRegistered
{
 use Dispatchable, SerializesModels;

 public $user;

 public function __construct(User $user)
 {

https://1v0.net/blog/how-to-send-emails-in-laravel-with-smtp-mailgun-and-postmark/
https://1v0.net

Laravel Starter Kits

 $this->user = $user;
 }
}Code language: PHP (php)

The event carries the User instance so listeners have everything needed to perform follow-
up actions.

// app/Listeners/SendWelcomeEmail.php
namespace App\Listeners;

use App\Events\UserRegistered;
use App\Mail\WelcomeMail;
use Illuminate\Support\Facades\Mail;

class SendWelcomeEmail
{
 public function handle(UserRegistered $event): void
 {
 Mail::to($event->user->email)
 ->send(new WelcomeMail($event->user));
 }
}Code language: PHP (php)

The listener’s handle() method receives the event, then dispatches the WelcomeMail to
the new user’s email address.

// app/Providers/EventServiceProvider.php
namespace App\Providers;

use Illuminate\Foundation\Support\Providers\EventServiceProvider as
ServiceProvider;
use App\Events\UserRegistered;
use App\Listeners\SendWelcomeEmail;

class EventServiceProvider extends ServiceProvider
{
 protected $listen = [
 UserRegistered::class => [
 SendWelcomeEmail::class,

https://1v0.net/blog/how-to-send-emails-in-laravel-with-smtp-mailgun-and-postmark/
https://1v0.net

Laravel Starter Kits

],
];
}Code language: PHP (php)

Registering the mapping in $listen tells Laravel to run SendWelcomeEmail whenever
UserRegistered is dispatched.

// app/Http/Controllers/RegisterController.php
use App\Events\UserRegistered;

public function store(Request $request)
{
 $user = User::create($request->validate([
 'name' => 'required|string|max:255',
 'email' => 'required|email|unique:users',
 'password' => 'required|min:8'
]));

 UserRegistered::dispatch($user);

 return redirect('/home')->with('success', 'Account created
successfully!');
}Code language: PHP (php)

Now the controller only fires an event. The listener handles email sending, improving
testability and maintainability.

Mailgun Configuration
Use Mailgun for transactional delivery by setting these variables in .env:

MAIL_MAILER=mailgun
MAILGUN_DOMAIN=your-domain.com

https://1v0.net/blog/how-to-send-emails-in-laravel-with-smtp-mailgun-and-postmark/
https://1v0.net

Laravel Starter Kits

MAILGUN_SECRET=your-mailgun-key
MAILGUN_ENDPOINT=api.mailgun.netCode language: Bash (bash)

With MAIL_MAILER=mailgun, all Mail::to(...)->send(...) calls route through
Mailgun’s API transport.

Postmark Configuration
Postmark focuses on high deliverability. Configure it like this:

MAIL_MAILER=postmark
POSTMARK_TOKEN=your-postmark-server-token
MAIL_FROM_ADDRESS=hello@yourdomain.com
MAIL_FROM_NAME="My App"Code language: Bash (bash)

Once active, Laravel will send via Postmark—helpful for critical emails like password resets
and receipts.

Testing Emails with PHPUnit
Use fakes to test behavior without sending real mail. Here we verify that the event triggers
the welcome email:

namespace Tests\Feature;

use Tests\TestCase;
use App\Events\UserRegistered;

https://1v0.net/blog/how-to-send-emails-in-laravel-with-smtp-mailgun-and-postmark/
https://1v0.net

Laravel Starter Kits

use App\Mail\WelcomeMail;
use App\Models\User;
use Illuminate\Support\Facades\Mail;
use Illuminate\Support\Facades\Event;
use Illuminate\Foundation\Testing\RefreshDatabase;

class MailTest extends TestCase
{
 use RefreshDatabase;

 public function test_event_triggers_welcome_email()
 {
 Mail::fake();
 Event::fake();

 $user = User::factory()->create();

 UserRegistered::dispatch($user);

 Event::assertDispatched(UserRegistered::class);

 Mail::assertSent(WelcomeMail::class, function ($mail) use
($user) {
 return $mail->hasTo($user->email);
 });
 }
}Code language: PHP (php)

We fake both subsystems, assert the event was dispatched, and confirm the expected
mailable was sent to the right recipient.

PHPUnit 10.*/Laravel Test Runner

 PASS Tests\Feature\MailTest
 ✓ test_event_triggers_welcome_email

 Tests: 1 passed
 Assertions: 2

https://1v0.net/blog/how-to-send-emails-in-laravel-with-smtp-mailgun-and-postmark/
https://1v0.net

Laravel Starter Kits

 Time: 0.41sCode language: Bash (bash)

This output indicates a successful run—your event fired and your mailable was sent, all
without hitting external mail services.

Wrapping Up
You configured SMTP, Mailgun, and Postmark; created a reusable mailable; sent it from a
controller; refactored to events and listeners for clean separation; and tested the flow with
fakes. This foundation ensures reliable, maintainable email delivery in production.

What’s Next
Explore more advanced communication and notification patterns:

Mastering Laravel Notifications: Mail, SMS, and Slack
Laravel Events and Listeners: A Complete Guide
How to Queue Emails in Laravel for Faster Delivery

https://1v0.net/blog/mastering-laravel-notifications-mail-sms-slack
https://1v0.net/blog/laravel-events-listeners-complete-guide
https://1v0.net/blog/how-to-queue-emails-in-laravel-for-faster-delivery
https://1v0.net/blog/how-to-send-emails-in-laravel-with-smtp-mailgun-and-postmark/
https://1v0.net

