
Laravel Starter Kits

How to Speed Up Laravel with Database Indexing

How to Speed Up Laravel with Database Indexing
As your Laravel app scales, database queries often become the bottleneck. A single missing
index can slow down a query from milliseconds to seconds. Indexing helps the database find
rows faster by creating lookup structures on columns. In this guide, we’ll cover different
types of indexes, how to create them with migrations, and how to verify performance
improvements.

1 – Why Indexing Matters
Without indexes, databases must scan entire tables to find records. With indexes, searches
are optimized like looking up words in a dictionary. The bigger your tables, the more critical
indexes become. For high-traffic Laravel apps, indexing is as important as caching and
queues (see 10 Proven Ways to Optimize Laravel for High Traffic).

2 – Adding Indexes in Migrations
Laravel migrations make it easy to add indexes when creating or modifying tables.

// database/migrations/2025_08_27_000001_add_indexes_to_users.php
use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Support\Facades\Schema;

https://1v0.net/blog/how-to-speed-up-laravel-with-database-indexing/
https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic
https://1v0.net/blog/how-to-speed-up-laravel-with-database-indexing/
https://1v0.net

Laravel Starter Kits

return new class extends Migration {
 public function up(): void
 {
 Schema::table('users', function (Blueprint $table) {
 $table->index('email');
 $table->index(['first_name', 'last_name']); // composite
index
 });
 }

 public function down(): void
 {
 Schema::table('users', function (Blueprint $table) {
 $table->dropIndex(['email']);
 $table->dropIndex(['first_name', 'last_name']);
 });
 }
};Code language: PHP (php)

This migration adds a single-column index on email and a composite index on first_name
+ last_name. The database can now quickly locate users by email or full name.

3 – Unique Indexes
Indexes can also enforce uniqueness, preventing duplicate values.

// database/migrations/2025_08_27_000002_add_unique_index.php
Schema::table('users', function (Blueprint $table) {
 $table->unique('username');
});Code language: PHP (php)

This ensures no two users can have the same username. The index speeds up lookups and
enforces integrity at the same time.

https://1v0.net/blog/how-to-speed-up-laravel-with-database-indexing/
https://1v0.net

Laravel Starter Kits

4 – Full-Text Indexes
For searching text columns, use full-text indexes. Supported in MySQL and PostgreSQL,
they allow fast search with MATCH ... AGAINST.

// database/migrations/2025_08_27_000003_add_fulltext_index.php
Schema::table('posts', function (Blueprint $table) {
 $table->fullText('content');
});Code language: PHP (php)

This lets you query posts with natural language search, far faster than scanning every row.
For complex searches, combine full-text with Laravel’s query builder filtering techniques.

5 – Measuring Query Performance
Always measure performance before and after adding indexes using EXPLAIN in
MySQL/Postgres.

EXPLAIN SELECT * FROM users WHERE email = 'test@example.com';Code
language: SQL (Structured Query Language) (sql)

Before adding the index, this query requires a full table scan. After the index, the DB uses
an indexed lookup, which is dramatically faster on large datasets.

https://1v0.net/blog/filtering-and-searching-with-laravel-eloquent-query-builder
https://1v0.net/blog/how-to-speed-up-laravel-with-database-indexing/
https://1v0.net

Laravel Starter Kits

6 – Indexing Best Practices
Index columns that are frequently used in WHERE, JOIN, and ORDER BY.
Avoid indexing every column—indexes add write overhead.
Use composite indexes for multi-column searches.
Regularly analyze queries with EXPLAIN.

Indexing complements caching and eager loading. For more on optimizing queries, see
Eager Loading vs Lazy Loading in Laravel: Best Practices.

Wrapping Up
Database indexing is one of the most effective optimizations for Laravel apps. By adding
single, composite, unique, and full-text indexes, you can cut query times dramatically.
Always measure queries with EXPLAIN and avoid over-indexing. Combined with caching and
queues, indexes help Laravel handle millions of queries efficiently.

What’s Next
10 Proven Ways to Optimize Laravel for High Traffic — indexing is a key part of large-
scale optimization.

https://1v0.net/blog/eager-loading-vs-lazy-loading-in-laravel-best-practices
https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic
https://1v0.net/blog/how-to-speed-up-laravel-with-database-indexing/
https://1v0.net

Laravel Starter Kits

Caching Strategies in Laravel: Redis vs Database vs File — combine indexes with
caching for maximum performance.
Eager Loading vs Lazy Loading in Laravel: Best Practices — avoid unnecessary queries
on top of optimized indexes.

https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file
https://1v0.net/blog/eager-loading-vs-lazy-loading-in-laravel-best-practices
https://1v0.net/blog/how-to-speed-up-laravel-with-database-indexing/
https://1v0.net

