
Laravel Starter Kits

How to Use Laravel Broadcasting with Pusher and
WebSockets

How to Use Laravel Broadcasting with
Pusher and WebSockets
Real-time features like notifications, chats, and dashboards bring apps to life. Laravel
Broadcasting makes it simple to broadcast server-side events to connected clients over
WebSockets. In this guide, we’ll configure broadcasting with Pusher, show how to use
Laravel WebSockets as an alternative, create an event, and listen on the frontend with
JavaScript.

What is Pusher?
Pusher is a hosted service that provides APIs and infrastructure for real-time
communication over WebSockets. Instead of building and scaling your own WebSocket
server, Pusher manages the connections, scaling, authentication, and delivery of messages
between clients and your Laravel app. It’s widely used for chat apps, notifications, live
dashboards, and collaborative tools.

When you broadcast an event in Laravel with the pusher driver, the event payload is sent
to the Pusher service. From there, Pusher instantly pushes the data to all subscribed clients
over WebSockets. This makes it possible for hundreds or thousands of users to see updates
live without refreshing the page.

Benefits of using Pusher:

Zero infrastructure overhead – No need to maintain your own WebSocket servers.
Scalable – Handles thousands of concurrent connections effortlessly.

https://1v0.net/blog/how-to-use-laravel-broadcasting-with-pusher-and-websockets/
https://1v0.net/blog/how-to-use-laravel-broadcasting-with-pusher-and-websockets/
https://1v0.net/blog/how-to-use-laravel-broadcasting-with-pusher-and-websockets/
https://1v0.net

Laravel Starter Kits

Reliable delivery – Provides guaranteed message delivery with retries.
Cross-platform support – Works with web, iOS, and Android clients.
Simple integration – Works seamlessly with Laravel Echo.

While Pusher is a paid service (with a free tier for small projects), it’s ideal for apps that
want a reliable, managed WebSocket solution without the hassle of scaling servers. If you
want a self-hosted alternative, Laravel WebSockets is a great option.

Pusher vs Laravel WebSockets
Not sure whether to use Pusher or Laravel WebSockets? Here’s a quick comparison:

Feature Pusher Laravel WebSockets
Hosting Managed SaaS (cloud) Self-hosted in your Laravel app
Setup Very easy (just add API keys) Requires package install + server setup
Scaling Automatic scaling by Pusher You scale your own server
Cost Free tier, then paid monthly Free (your server costs only)

Best For Teams who want simplicity and
reliability

Teams who want full control and avoid
recurring costs

Configure Broadcasting in Laravel
First, install the required packages. If you’re using Pusher, install the PHP SDK:

composer require pusher/pusher-php-serverCode language: Bash (bash)

Then, update your .env file with your Pusher credentials:

https://beyondco.de/docs/laravel-websockets
https://1v0.net/blog/how-to-use-laravel-broadcasting-with-pusher-and-websockets/
https://1v0.net

Laravel Starter Kits

BROADCAST_DRIVER=pusher

PUSHER_APP_ID=your-app-id
PUSHER_APP_KEY=your-app-key
PUSHER_APP_SECRET=your-app-secret
PUSHER_APP_CLUSTER=mt1Code language: Bash (bash)

For local development without external services, you can use the Laravel WebSockets
package as a Pusher-compatible replacement.

Create a Broadcastable Event
Next, generate an event that implements ShouldBroadcast. For example, a new chat
message:

php artisan make:event MessageSentCode language: Bash (bash)

// app/Events/MessageSent.php
namespace App\Events;

use Illuminate\Broadcasting\InteractsWithSockets;
use Illuminate\Broadcasting\PrivateChannel;
use Illuminate\Contracts\Broadcasting\ShouldBroadcast;
use Illuminate\Foundation\Events\Dispatchable;
use Illuminate\Queue\SerializesModels;
use App\Models\Message;

class MessageSent implements ShouldBroadcast
{
 use Dispatchable, InteractsWithSockets, SerializesModels;

 public $message;

https://beyondco.de/docs/laravel-websockets
https://1v0.net/blog/how-to-use-laravel-broadcasting-with-pusher-and-websockets/
https://1v0.net

Laravel Starter Kits

 public function __construct(Message $message)
 {
 $this->message = $message;
 }

 public function broadcastOn(): array
 {
 return [new PrivateChannel('chat.'.$this->message->chat_id)];
 }
}Code language: PHP (php)

This event broadcasts messages to a private chat channel, e.g. chat.1. You can scope
channels by user, team, or resource ID.

Broadcasting from a Controller
After saving a message, dispatch the event in your controller:

// app/Http/Controllers/ChatController.php
namespace App\Http\Controllers;

use App\Models\Message;
use App\Events\MessageSent;
use Illuminate\Http\Request;

class ChatController extends Controller
{
 public function send(Request $request)
 {
 $message = Message::create([
 'chat_id' => $request->chat_id,
 'user_id' => auth()->id(),
 'body' => $request->body,

https://1v0.net/blog/how-to-use-laravel-broadcasting-with-pusher-and-websockets/
https://1v0.net

Laravel Starter Kits

]);

 broadcast(new MessageSent($message))->toOthers();

 return response()->json(['status' => 'Message sent!']);
 }
}Code language: PHP (php)

broadcast() sends the event to all connected clients except the sender (toOthers()).

Listening on the Frontend
Laravel Echo is a JavaScript library that makes subscribing to channels simple. Install it via
NPM:

npm install laravel-echo pusher-js --saveCode language: Bash (bash)

Configure Echo in your resources/js/bootstrap.js or app.js file:

import Echo from 'laravel-echo';
import Pusher from 'pusher-js';

window.Pusher = Pusher;

window.Echo = new Echo({
 broadcaster: 'pusher',
 key: import.meta.env.VITE_PUSHER_APP_KEY,
 cluster: import.meta.env.VITE_PUSHER_APP_CLUSTER,
 forceTLS: true
});Code language: JavaScript (javascript)

Now listen for the event on the frontend:

https://1v0.net/blog/how-to-use-laravel-broadcasting-with-pusher-and-websockets/
https://1v0.net

Laravel Starter Kits

window.Echo.private('chat.1')
 .listen('MessageSent', (e) => {
 console.log('New message:', e.message.body);
 const messages = document.getElementById('messages');
 messages.innerHTML += `${e.message.body}`;
 });Code language: JavaScript (javascript)

Whenever a new message is sent to chat.1, connected clients instantly receive it without
refreshing.

UI Example: Real-Time Chat Box
Here’s a minimal Blade view with a real-time chat interface:

<div id="chat">
 <ul id="messages">
 <form id="chat-form" method="POST" action="/chat/send">
 @csrf
 <input type="text" name="body" placeholder="Type a message...">
 <button type="submit">Send</button>
 </form>
</div>

<script>
document.getElementById('chat-form').addEventListener('submit', async
(e) => {
 e.preventDefault();
 const body = e.target.body.value;
 await fetch('/chat/send', {
 method: 'POST',
 headers: {'X-CSRF-TOKEN': '{{ csrf_token() }}','Content-
Type':'application/json'},
 body: JSON.stringify({ chat_id: 1, body })

https://1v0.net/blog/how-to-use-laravel-broadcasting-with-pusher-and-websockets/
https://1v0.net

Laravel Starter Kits

 });
 e.target.reset();
});
</script>Code language: PHP (php)

This chat form submits messages, which are broadcasted via the event and instantly
appended to the message list.

Wrapping Up
With Laravel Broadcasting, Pusher, or Laravel WebSockets, you can implement real-time
features like chat, notifications, and dashboards. We explained what Pusher is, compared it
with Laravel WebSockets, configured broadcasting, created a MessageSent event, listened
with Laravel Echo, and built a simple chat UI. This foundation lets you add interactive, live
features to your Laravel apps.

What’s Next
Explore more real-time and event-driven features with these guides:

Laravel Events and Listeners: A Complete Guide
How to Use Laravel Observers for Model Events
Laravel Horizon vs Queue Workers: Which One Should You Use?

https://1v0.net/blog/laravel-events-and-listeners-a-complete-guide
https://1v0.net/blog/how-to-use-laravel-observers-for-model-events
https://1v0.net/blog/laravel-horizon-vs-queue-workers-which-one-should-you-use
https://1v0.net/blog/how-to-use-laravel-broadcasting-with-pusher-and-websockets/
https://1v0.net

