
Laravel Starter Kits

How to Use Laravel Livewire for Interactive UIs

Laravel Livewire allows you to build dynamic, reactive interfaces without writing JavaScript.
Instead, Livewire components are written in PHP and Blade, and Livewire handles the DOM
updates via AJAX under the hood. This makes it perfect for developers who prefer Laravel’s
syntax but still need interactivity. In this article, we’ll set up Livewire, create components,
connect them with controllers, trigger events, and build a practical login form with
validation.

I remember the first time I decided to drop Livewire into a Laravel 12 project to build an
interactive admin panel — I wanted the speed of Blade and the reactivity of a small SPA
without introducing a full JavaScript framework. I scaffolded a basic CRUD for products and
thought it would be straightforward: create component, wire up model, done. The reality
turned out to be a lot richer and taught me several hard lessons.

At the beginning I created a ProductTable Livewire component that held public properties
for filters, sort direction, and the current page. I mounted the component with mount() and
loaded the first page of products. Initially everything worked: filtering, sorting, and
pagination responded and the UI felt snappy. But as I added features, problems started
showing.

First problem: state bloat. I had bound a collection directly to a public property for
convenience. After a few users started testing, requests slowed — every interaction
serialized a huge payload. The fix was immediate: I replaced the collection with a query
and only stored primitive values (search string, category id, sort key). When I needed
models I fetched them inside methods (e.g., render() or action methods) so the serialized
state stayed tiny.

Next was the search input — I bound it wire:model="search" initially and we got
network requests on every keystroke. For the developer demo it was annoying, and on
slower connections it felt broken. I switched to wire:model.debounce.500ms="search"
and later to wire:model.defer="search" for forms where the user would explicitly

https://1v0.net/blog/how-to-use-laravel-livewire-for-interactive-uis/
https://1v0.net/blog/how-to-use-laravel-livewire-for-interactive-uis/
https://1v0.net

Laravel Starter Kits

submit. That single change reduced the number of requests by an order of magnitude and
smoothed the UX.

I also learned to pair Alpine.js and Livewire properly. I had a modal that contained a
Livewire form. At first I controlled the modal purely with Alpine, and Livewire updates
sometimes re-rendered the modal markup which closed it unexpectedly. The pattern that
fixed this was: keep the modal open/close state in Alpine and use Livewire events to notify
Alpine when to open or close. Example: after saving, Livewire did
$this->emit('saved'), and in JS window.livewire.on('saved', () =>
Alpine.store('modal').close()). This kept responsibilities clear: Alpine for local UI
state, Livewire for server interactions.

File uploads were another headache. I implemented quick image uploads using Livewire’s
temporary upload feature. With small files it was fine, but a client tried to upload 30MB
images and the upload failed on our server limits. I added client-side validations, limited
maximum file size, and introduced direct S3 uploads for very large media. For UX I hooked
into Livewire upload events (livewire-upload-start, progress, finish) and used
Alpine to render a progress bar. Users loved the visible progress; ops loved that big files no
longer hit the app server.

Performance in listing pages pushed me to adopt server-side pagination and careful
querying. Initially I was using Eloquent relationships with ->with('heavyRelation')
everywhere. Under load the pages got slow. The answer was to eager load judiciously and
cache counts with remember() for non-critical stats. I also used Livewire’s
WithPagination trait and made sure to reset the page when filters changed
($this->resetPage()), otherwise users were sometimes left on an empty page after
filtering.

Testing saved me from regressions. I wrote Livewire tests with
Livewire::test(ProductTable::class) and asserted
->set('search','foo')->call('apply')->assertSee('Foo Product'). Those
tests were fast and reliable compared to full browser E2E. When a bug slipped through in a
JS/Alpine interaction I added a small integration test and a manual QA checklist for modal
flows.

Deployment taught me two operational lessons: enable proper session affinity for the load
balancer (Livewire round trips rely on sessions) and make sure your front-end build artifacts
and Livewire assets are deployed atomically. One night we had a mismatch between blade
markup and the compiled assets after a rolling deploy, and Livewire updates misbehaved —

https://1v0.net/blog/how-to-use-laravel-livewire-for-interactive-uis/
https://1v0.net

Laravel Starter Kits

we fixed it by aligning deploy steps and clearing caches in the right order.

Finally, the maintainability payoff was real. When a new product manager asked for inline
editing of product names, I built a tiny InlineEdit Livewire component, plugged it into
every row, and shipped the feature in an afternoon. The team loved that we stayed in Blade,
kept Laravel validation rules centralized, and avoided a bigger JS rewrite.

If I summarize the takeaways from that project: keep Livewire state small, debounce or
defer inputs, pair Alpine for purely local UI, avoid serializing large models, use direct
uploads for big files, test Livewire interactions, and ensure deploys preserve session/asset
consistency. Livewire gave us fast developer velocity and a clean, maintainable UX — but
only after wrestling with these practical pitfalls.

Installing Laravel Livewire
composer require livewire/livewireCode language: Bash (bash)

After installing, include Livewire’s scripts and styles in your Blade layout:

<!-- resources/views/layouts/app.blade.php -->
<html lang="en">
<head>
 @livewireStyles
</head>
<body>
 <div class="container">
 @yield('content')
 </div>
 @livewireScripts
</body>
</html>Code language: PHP (php)

Now Livewire is available throughout your Laravel project.

https://1v0.net/blog/how-to-use-laravel-livewire-for-interactive-uis/
https://1v0.net

Laravel Starter Kits

Creating Your First Livewire Component
php artisan make:livewire CounterCode language: Bash (bash)

This generates two files:

app/Http/Livewire/Counter.php // Component logic (PHP)
resources/views/livewire/counter.blade.php // Component view (Blade)
Code language: plaintext (plaintext)

// app/Http/Livewire/Counter.php
namespace App\Http\Livewire;

use Livewire\Component;

class Counter extends Component
{
 public $count = 0;

 public function increment()
 {
 $this->count++;
 }

 public function render()
 {
 return view('livewire.counter');
 }
}Code language: PHP (php)

<!-- resources/views/livewire/counter.blade.php -->
<div>
 <h2>Count: {{ $count }}</h2>

https://1v0.net/blog/how-to-use-laravel-livewire-for-interactive-uis/
https://1v0.net

Laravel Starter Kits

 <button wire:click="increment">Increment</button>
</div>Code language: PHP (php)

The PHP property $count syncs with Blade automatically. Clicking the button calls the
increment method, Livewire updates the DOM, and no JavaScript is required.

Embedding Livewire in Blade
<!-- resources/views/welcome.blade.php -->
@extends('layouts.app')

@section('content')
 <h1>Welcome</h1>
 @livewire('counter')
@endsectionCode language: PHP (php)

Use the @livewire('name') directive to embed Livewire components into Blade views.

Using Livewire with Controllers
You can fetch data inside Livewire components the same way you would in a controller. For
example, listing posts:

// app/Http/Livewire/PostList.php
namespace App\Http\Livewire;

use Livewire\Component;

https://1v0.net/blog/how-to-use-laravel-livewire-for-interactive-uis/
https://1v0.net

Laravel Starter Kits

use App\Models\Post;

class PostList extends Component
{
 public $posts = [];

 public function mount()
 {
 $this->posts = Post::latest()->get();
 }

 public function render()
 {
 return view('livewire.post-list');
 }
}Code language: PHP (php)

<!-- resources/views/livewire/post-list.blade.php -->
<div>
 <h2>Posts</h2>

 @foreach($posts as $post)
 {{ $post->title }}
 @endforeach

</div>Code language: PHP (php)

The mount() method acts like a controller constructor, loading data before rendering.
Livewire keeps it reactive when the component updates.

https://1v0.net/blog/how-to-use-laravel-livewire-for-interactive-uis/
https://1v0.net

Laravel Starter Kits

Triggering Events with Livewire
Livewire supports emitting and listening to events between components, just like Laravel
events. This enables parent-child communication without JavaScript.

// app/Http/Livewire/ChildComponent.php
namespace App\Http\Livewire;

use Livewire\Component;

class ChildComponent extends Component
{
 public function notifyParent()
 {
 $this->emit('childNotified', 'Child says hello!');
 }

 public function render()
 {
 return view('livewire.child-component');
 }
}Code language: PHP (php)

<!-- resources/views/livewire/child-component.blade.php -->
<button wire:click="notifyParent">Notify Parent</button>Code language:
PHP (php)

// app/Http/Livewire/ParentComponent.php
namespace App\Http\Livewire;

use Livewire\Component;

class ParentComponent extends Component
{
 protected $listeners = ['childNotified'];

 public function childNotified($message)
 {
 session()->flash('info', $message);

https://1v0.net/blog/how-to-use-laravel-livewire-for-interactive-uis/
https://1v0.net

Laravel Starter Kits

 }

 public function render()
 {
 return view('livewire.parent-component');
 }
}Code language: PHP (php)

The parent listens to the childNotified event and reacts by flashing a session message.
This mimics event-driven UIs with only PHP and Blade.

Building a Livewire Login Form
Let’s build a login form UI with Livewire that handles validation and authentication directly.

// app/Http/Livewire/LoginForm.php
namespace App\Http\Livewire;

use Livewire\Component;
use Illuminate\Support\Facades\Auth;

class LoginForm extends Component
{
 public $email = '';
 public $password = '';

 protected $rules = [
 'email' => 'required|email',
 'password' => 'required|min:6',
];

 public function login()
 {

https://1v0.net/blog/how-to-use-laravel-livewire-for-interactive-uis/
https://1v0.net

Laravel Starter Kits

 $this->validate();

 if (Auth::attempt(['email' => $this->email, 'password' =>
$this->password])) {
 session()->regenerate();
 return redirect()->intended('/dashboard');
 }

 $this->addError('email', 'Invalid credentials.');
 }

 public function render()
 {
 return view('livewire.login-form');
 }
}Code language: PHP (php)

<!-- resources/views/livewire/login-form.blade.php -->
<form wire:submit.prevent="login">
 <div>
 <label for="email">Email</label>
 <input id="email" type="email" wire:model="email">
 @error('email') {{ $message }}
@enderror
 </div>

 <div>
 <label for="password">Password</label>
 <input id="password" type="password" wire:model="password">
 @error('password') {{ $message }}
@enderror
 </div>

 <button type="submit">Login</button>
</form>Code language: PHP (php)

The component handles input binding, validation, and authentication logic in PHP. No
JavaScript is needed, but the UI feels dynamic thanks to Livewire.

https://1v0.net/blog/how-to-use-laravel-livewire-for-interactive-uis/
https://1v0.net

Laravel Starter Kits

Wrapping Up
Livewire bridges the gap between Laravel Blade and modern JavaScript frameworks. You
can build interactive components, handle events, fetch data, and even implement
authentication UIs without leaving PHP. It’s ideal for developers who want interactivity
while staying in the Laravel ecosystem.

Livewire vs Vue: Which Should You Choose?
Laravel supports both Livewire and Vue 3. Which one you use depends on your project’s
needs. Here’s a quick comparison:

Feature Livewire Vue 3

Learning Curve Low — stays in PHP and Blade. Higher — requires JS and Vue
ecosystem knowledge.

Setup Composer install, Blade
directives. Install via NPM + Vite config.

Use Cases Forms, dashboards, CRUD,
admin panels.

SPAs, real-time UIs, highly
interactive apps.

Performance Good, but frequent AJAX calls. Excellent, reactive updates in the
browser.

Flexibility Bound to Laravel ecosystem. Can integrate with any backend
API.

Developer Audience Laravel devs who prefer PHP-
only solutions. Teams with frontend specialists.

https://1v0.net/blog/how-to-use-laravel-livewire-for-interactive-uis/
https://1v0.net

Laravel Starter Kits

Recommendation: Use Livewire if you want Laravel-only productivity without diving deep
into JavaScript. Use Vue 3 if your app needs SPA features, heavy interactivity, or has a
dedicated frontend team.

What’s Next
Want to go further with Livewire and interactive UIs? Try these guides:

Creating a Role-Specific Dashboard in Laravel 12
Creating a User-Friendly Roles & Permissions UI in Laravel
Mastering Validation Rules in Laravel 12

https://1v0.net/blog/creating-a-role-specific-dashboard-in-laravel-12
https://1v0.net/blog/creating-a-user-friendly-roles-permissions-ui-in-laravel
https://1v0.net/blog/mastering-validation-rules-in-laravel-12
https://1v0.net/blog/how-to-use-laravel-livewire-for-interactive-uis/
https://1v0.net

