
Laravel Starter Kits

How to Use Laravel Queues for Faster Performance

How to Use Laravel Queues for Faster Performance
When your Laravel app handles tasks like sending emails, generating reports, or processing
uploads, running them inside the main request slows down response times. Queues let you
offload heavy tasks to background workers so users get instant responses. In this guide,
we’ll configure queues, create jobs, run workers, and monitor them effectively.

1 – Configure Queue Driver
Laravel supports multiple queue backends like database, redis, and beanstalkd. Redis
is most common in production.

.env QUEUE_CONNECTION=redis

This sets Redis as the default queue driver. Make sure Redis is installed and running on
your server. For a deep dive into different cache/queue stores, see Caching Strategies in
Laravel: Redis vs Database vs File.

2 – Create a Job
Jobs encapsulate the work you want to run in the background. Use Artisan to generate one:

php artisan make:job SendWelcomeEmailCode language: Bash (bash)

https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance/
https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file
https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file
https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance/
https://1v0.net

Laravel Starter Kits

This creates a new class in app/Jobs/. You can customize it to perform specific logic.

// app/Jobs/SendWelcomeEmail.php
namespace App\Jobs;

use App\Mail\WelcomeMail;
use Illuminate\Bus\Queueable;
use Illuminate\Contracts\Queue\ShouldQueue;
use Illuminate\Foundation\Bus\Dispatchable;
use Illuminate\Queue\InteractsWithQueue;
use Illuminate\Queue\SerializesModels;
use Illuminate\Support\Facades\Mail;

class SendWelcomeEmail implements ShouldQueue
{
 use Dispatchable, InteractsWithQueue, Queueable, SerializesModels;

 public function __construct(public $user) {}

 public function handle()
 {
 Mail::to($this->user->email)
 ->send(new WelcomeMail($this->user->name));
 }
}Code language: PHP (php)

This job sends a welcome email. Because it implements ShouldQueue, Laravel
automatically pushes it into the queue instead of running synchronously.

3 – Dispatch Jobs
You can dispatch jobs from controllers, events, or service classes.

https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance/
https://1v0.net

Laravel Starter Kits

// app/Http/Controllers/UserController.php
use App\Jobs\SendWelcomeEmail;

public function store(Request $request)
{
 $user = User::create($request->all());

 SendWelcomeEmail::dispatch($user);

 return response()->json(['message' => 'User created!']);
}Code language: PHP (php)

Here, when a new user registers, the welcome email job is dispatched. The controller
immediately returns a response while the email is sent in the background.

4 – Run Queue Workers
Queue workers listen for jobs and process them as they come in.

php artisan queue:workCode language: Bash (bash)

This runs a worker that listens to the default connection (redis). In production, use a
process manager like Supervisor or systemd to keep workers alive. For advanced
monitoring, check How to Use Laravel Horizon for Queue Monitoring.

https://1v0.net/blog/how-to-use-laravel-horizon-for-queue-monitoring
https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance/
https://1v0.net

Laravel Starter Kits

5 – Failed Jobs
When jobs fail (e.g., email server down), Laravel can log them for later retries.

php artisan queue:failed-table
php artisan migrateCode language: Bash (bash)

This creates a failed_jobs table. Workers automatically log failed jobs here. You can
retry them with:

php artisan queue:retry allCode language: Bash (bash)

This is useful for handling temporary outages—retrying jobs once the external service is
back online.

6 – Delayed & Chained Jobs
You can delay execution or chain multiple jobs to run in sequence.

// Delay by 10 minutes
SendWelcomeEmail::dispatch($user)->delay(now()->addMinutes(10));

// Chain jobs
ProcessImage::withChain([
 new ResizeImage($path),
 new UploadToS3($path),
])->dispatch();Code language: PHP (php)

Delays are useful for reminder emails, while chains help orchestrate multi-step workflows
like image processing pipelines.

https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance/
https://1v0.net

Laravel Starter Kits

7 – Queues in High-Traffic Apps
Queues are critical in high-traffic apps to offload CPU-heavy tasks. Combine queues with
caching, indexing, and Octane for best results. For a broader overview, see 10 Proven Ways
to Optimize Laravel for High Traffic.

Wrapping Up
You’ve learned how to configure queue drivers, create jobs, dispatch them, run workers,
handle failures, and chain tasks. With queues, you decouple heavy work from user-facing
requests, making apps feel instant even under load. Always monitor queues and use retry
logic to handle external service downtime gracefully.

What’s Next
How to Use Laravel Horizon for Queue Monitoring — manage and visualize your queue
system in production.
Caching Strategies in Laravel: Redis vs Database vs File — combine queues with
efficient caching for optimal speed.
Optimizing Laravel for High Concurrency with Octane — scale your queues and
workers for thousands of requests per second.

https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic
https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic
https://1v0.net/blog/how-to-use-laravel-horizon-for-queue-monitoring
https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file
https://1v0.net/blog/optimizing-laravel-for-high-concurrency-with-octane
https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance/
https://1v0.net

