
Laravel Starter Kits

How to Write Feature Tests in Laravel for APIs

How to Write Feature Tests in Laravel for APIs
Feature tests validate full request lifecycles—routes, middleware, controllers, policies,
database, and JSON responses. In this guide, you’ll create API endpoints, secure them, and
write expressive feature tests that assert status codes, payload structure, and side effects.

Prerequisites and Setup
Ensure you have a working API stack and database test environment. If you’re building a
token-based API, consider first reading How to Build a REST API with Laravel 12 &
Sanctum and Securing Laravel APIs with Sanctum: Complete Guide.

php artisan make:model Post -mf
php artisan make:controller Api/PostController --api
php artisan make:test Api/PostApiTestCode language: Bash (bash)

This scaffolds a Post model, migration, factory, an API controller, and a feature test class to
exercise the HTTP layer.

Create Routes and Controller Methods
Define minimal endpoints for listing and creating posts. These examples assume you’ll
protect store with auth middleware (e.g., Sanctum).

https://1v0.net/blog/how-to-write-feature-tests-in-laravel-for-apis/
https://1v0.net/blog/how-to-build-a-rest-api-with-laravel-12-sanctum
https://1v0.net/blog/how-to-build-a-rest-api-with-laravel-12-sanctum
https://1v0.net/blog/securing-laravel-apis-with-sanctum-complete-guide
https://1v0.net/blog/how-to-write-feature-tests-in-laravel-for-apis/
https://1v0.net

Laravel Starter Kits

// routes/api.php
use Illuminate\Support\Facades\Route;
use App\Http\Controllers\Api\PostController;

Route::get('/posts', [PostController::class, 'index']);
Route::middleware('auth:sanctum')->post('/posts',
[PostController::class, 'store']);Code language: PHP (php)

GET /posts is public for demonstration; POST /posts requires authentication via
auth:sanctum. Adjust to your security needs.

// app/Http/Controllers/Api/PostController.php
namespace App\Http\Controllers\Api;

use App\Http\Controllers\Controller;
use App\Models\Post;
use Illuminate\Http\Request;
use Illuminate\Http\Response;

class PostController extends Controller
{
 public function index()
 {
 return response()->json([
 'data' =>
Post::latest()->select(['id','title','body'])->paginate(10)
]);
 }

 public function store(Request $request)
 {
 $validated = $request->validate([
 'title' => ['required','string','max:120'],
 'body' => ['required','string'],
]);

 $post = Post::create($validated);

https://1v0.net/blog/how-to-write-feature-tests-in-laravel-for-apis/
https://1v0.net

Laravel Starter Kits

 return response()->json([
 'message' => 'Created',
 'data' => [
 'id' => $post->id,
 'title' => $post->title,
 'body' => $post->body,
],
], Response::HTTP_CREATED);
 }
}Code language: PHP (php)

The controller returns predictable JSON structures so your tests can assert both shape and
content. For clean response formatting in larger projects, also see How to Use Eloquent API
Resources for Clean APIs.

// database/migrations/xxxx_xx_xx_create_posts_table.php
use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Support\Facades\Schema;

return new class extends Migration {
 public function up(): void {
 Schema::create('posts', function (Blueprint $table) {
 $table->id();
 $table->string('title');
 $table->text('body');
 $table->timestamps();
 });
 }
 public function down(): void {
 Schema::dropIfExists('posts');
 }
};Code language: PHP (php)

This migration creates a minimal posts table. Keep columns concise to make focused tests
faster and more reliable.

// database/factories/PostFactory.php
namespace Database\Factories;

https://1v0.net/blog/how-to-use-eloquent-api-resources-for-clean-apis
https://1v0.net/blog/how-to-use-eloquent-api-resources-for-clean-apis
https://1v0.net/blog/how-to-write-feature-tests-in-laravel-for-apis/
https://1v0.net

Laravel Starter Kits

use Illuminate\Database\Eloquent\Factories\Factory;

class PostFactory extends Factory
{
 public function definition(): array
 {
 return [
 'title' => $this->faker->sentence(6),
 'body' => $this->faker->paragraph(),
];
 }
}Code language: PHP (php)

Factories provide quick, expressive test data. For deeper patterns, see Using Laravel
Factories and Seeders for Test Data.

Writing Feature Tests for API Endpoints
Below is the complete test suite for a small Posts API. Right after the code, you’ll find a line-
by-line breakdown explaining every import, trait, method, assertion, and why it matters.

// tests/Feature/Api/PostApiTest.php
namespace Tests\Feature\Api;

use Tests\TestCase;
use App\Models\User;
use App\Models\Post;
use Illuminate\Foundation\Testing\RefreshDatabase;

class PostApiTest extends TestCase
{
 use RefreshDatabase;

https://1v0.net/blog/using-laravel-factories-seeders-for-test-data
https://1v0.net/blog/using-laravel-factories-seeders-for-test-data
https://1v0.net/blog/how-to-write-feature-tests-in-laravel-for-apis/
https://1v0.net

Laravel Starter Kits

 public function test_can_list_posts_as_json()
 {
 Post::factory()->count(3)->create();

 $response = $this->getJson('/api/posts');

 $response->assertOk()
 ->assertJsonStructure(['data' => ['data' =>
[['id','title','body']]]]);
 }

 public function test_cannot_create_post_when_unauthenticated()
 {
 $response = $this->postJson('/api/posts', [
 'title' => 'Hello',
 'body' => 'World',
]);

 $response->assertUnauthorized();
 }

 public function test_authenticated_user_can_create_post()
 {
 $user = User::factory()->create();

 $response = $this->actingAs($user, 'sanctum')
 ->postJson('/api/posts', [
 'title' => 'My Title',
 'body' => 'Body text',
]);

 $response->assertCreated()
 ->assertJsonPath('data.title', 'My Title');

 $this->assertDatabaseHas('posts', ['title' => 'My Title']);
 }

 public function test_validation_errors_are_returned()

https://1v0.net/blog/how-to-write-feature-tests-in-laravel-for-apis/
https://1v0.net

Laravel Starter Kits

 {
 $user = User::factory()->create();

 $response = $this->actingAs($user, 'sanctum')
 ->postJson('/api/posts', [
 'title' => '', // invalid
 'body' => '', // invalid
]);

 $response->assertStatus(422)
 ->assertJsonValidationErrors(['title','body']);
 }
}Code language: PHP (php)

Namespace & Imports

namespace Tests\Feature\Api; — Organizes this test under Feature/Api so it’s
discoverable by PHPUnit and matches your folder structure.
use Tests\TestCase; — Base Laravel test case boots the application, loads the
HTTP kernel, and gives you helpers like getJson, postJson, and actingAs.
use App\Models\User; and use App\Models\Post; — Import Eloquent models
you use in factories and database assertions.
use Illuminate\Foundation\Testing\RefreshDatabase; — Trait that wraps
each test in a transaction or re-runs migrations to ensure a clean database for isolation
and reliability.

Class & Trait

class PostApiTest extends TestCase — Extends the Laravel-aware TestCase
so your app container, routing, middleware, and database are available.
use RefreshDatabase; — Ensures each test starts with a known DB state (empty
tables unless your migrations seed).

Test 1: Listing Posts as JSON

Post::factory()->count(3)->create(); — Seeds three posts using your factory
so the index endpoint has data to return.
$this->getJson('/api/posts'); — Performs a JSON GET request to your API
route, automatically setting the Accept: application/json header.

https://1v0.net/blog/how-to-write-feature-tests-in-laravel-for-apis/
https://1v0.net

Laravel Starter Kits

$response->assertOk(); — Expects HTTP 200; ensures the route is registered and
didn’t error.
assertJsonStructure(['data' => ['data' => [['id','title','body'
]]]]) — Validates the JSON shape. The duplication of data is intentional if you’re
wrapping a Laravel paginator: the outer data is your envelope; the inner data is the
paginated array of items. Each item must include id, title, and body.

Test 2: Unauthenticated Create Should Fail

$this->postJson('/api/posts', [...]) — Sends a JSON POST to the protected
endpoint without credentials.
->assertUnauthorized(); — Expects HTTP 401, which implies your route is
correctly behind auth:sanctum (or equivalent).
Purpose: Ensures that unauthenticated users can’t create resources, protecting data
integrity.

Test 3: Authenticated Create Should Succeed

$user = User::factory()->create(); — Creates a real user record to
authenticate requests against.
$this->actingAs($user, 'sanctum') — Authenticates as $user using the
sanctum guard so the request passes the auth:sanctum middleware.
->postJson('/api/posts', ['title' => 'My Title','body' => 'Body
text']) — Submits valid payload to create a post.
$response->assertCreated(); — Expects HTTP 201 Created, matching REST
semantics in your controller’s store method.
->assertJsonPath('data.title','My Title'); — Reads a specific JSON path
and asserts the value, confirming the API echoes created data consistently.
$this->assertDatabaseHas('posts',['title' => 'My Title']); — Verifies
the side effect (DB write) happened correctly, not just the HTTP layer.

Test 4: Validation Errors Are Returned

$this->actingAs($user, 'sanctum') — Ensures we’re testing pure validation,
not auth.
->postJson('/api/posts', ['title' => '', 'body' => '']) — Sends
invalid input to trigger the validator.
$response->assertStatus(422); — 422 Unprocessable Entity is the expected
status for validation failures in JSON APIs.

https://1v0.net/blog/how-to-write-feature-tests-in-laravel-for-apis/
https://1v0.net

Laravel Starter Kits

->assertJsonValidationErrors(['title','body']); — Confirms the error
bag contains keys for the invalid fields, which your frontend can render inline.

Why getJson/postJson Instead of get/post? These helpers automatically set JSON
headers, ensuring your app returns JSON responses (e.g., validation error format) instead of
redirecting with HTML. This keeps tests deterministic and representative of real API clients.

Why RefreshDatabase? It guarantees each test runs against a clean schema and data set.
This prevents hidden coupling between tests (e.g., leftovers from a previous test) and makes
failures reproducible.

Why Assert Both HTTP and Database? HTTP assertions confirm routing, middleware,
and controller logic, while database assertions confirm side effects. Together, they validate
behavior end to end.

With these explanations, you can confidently modify routes, policies, validation rules, and
response formats while keeping your tests expressive and trustworthy.

Sample Test Output
Running the suite with php artisan test should show all green when your endpoints and
tests align.

PHPUnit 10.*/Laravel Test Runner

 PASS Tests\Feature\Api\PostApiTest
 ✓ test_can_list_posts_as_json
 ✓ test_cannot_create_post_when_unauthenticated
 ✓ test_authenticated_user_can_create_post
 ✓ test_validation_errors_are_returned

 Tests: 4 passed
 Assertions: 11

https://1v0.net/blog/how-to-write-feature-tests-in-laravel-for-apis/
https://1v0.net

Laravel Starter Kits

 Time: 0.89sCode language: Bash (bash)

For a failing sample (e.g., missing auth), PHPUnit highlights the failing expectation with a
diff of expected vs. actual, plus a stack trace line to jump into your test file and controller.

Advanced Tips: Policies, Rate Limits, and Resources
Layer in authorization and rate limiting for production realism. Use policies to gate actions
and add tests that assert 403 for forbidden operations. For token issuance and scopes,
consider How to Add JWT Authentication to Laravel APIs if JWT fits your architecture.

// Example: assert rate limiting headers exist (if enabled)
$response = $this->getJson('/api/posts');
$response->assertOk();
$this->assertTrue($response->headers->has('X-RateLimit-
Remaining'));Code language: PHP (php)

These checks help verify production-grade API behavior beyond basic CRUD: authorization,
throttling, and predictable resource shapes.

Wrapping Up
You built API endpoints and wrote comprehensive feature tests covering listing,
authentication, creation, and validation. You also learned how to read test output and assert
headers and JSON shapes—key skills for keeping APIs robust during rapid iteration.

https://1v0.net/blog/how-to-add-jwt-authentication-to-laravel-apis
https://1v0.net/blog/how-to-write-feature-tests-in-laravel-for-apis/
https://1v0.net

Laravel Starter Kits

What’s Next
Deepen your API testing and security with these related guides:

How to Build a REST API with Laravel 12 & Sanctum
Securing Laravel APIs with Sanctum: Complete Guide
How to Use Eloquent API Resources for Clean APIs

https://1v0.net/blog/how-to-build-a-rest-api-with-laravel-12-sanctum
https://1v0.net/blog/securing-laravel-apis-with-sanctum-complete-guide
https://1v0.net/blog/how-to-use-eloquent-api-resources-for-clean-apis
https://1v0.net/blog/how-to-write-feature-tests-in-laravel-for-apis/
https://1v0.net

