1v02E

Implementing Two-Factor Authentication in Laravel

Passwords alone are no longer enough to secure user accounts. Data breaches, phishing,
and reused passwords make applications vulnerable. That’s why more and more modern
apps use Two-Factor Authentication (2FA) to protect logins. In this article, we’ll explore
what 2FA is, why you should add it, and how to implement Two-Factor Authentication in
Laravel 12 step by step.

By the end, you'll have a working system where users log in with their email and password,
then confirm their identity using a 6-digit code from an app like Google Authenticator or
Authy. This guide is beginner-friendly and packed with explanations so you understand not
just the code, but also the concepts behind 2FA.

1 - What is Two-Factor Authentication (2FA)?

Two-Factor Authentication (2FA) is a security process that requires users to prove their
identity in two ways: something they know (like a password) and something they have (like a
phone that generates time-based codes). Even if an attacker steals the password, they can’t
log in without the second factor.

The most common form is TOTP (Time-based One-Time Password). Apps like Google
Authenticator, Authy, or Microsoft Authenticator generate a fresh 6-digit code every 30
seconds. Users link their app by scanning a QR code you provide, then enter those codes
when prompted.

Adding Laravel two-factor authentication means your application gains the same level of
protection that banks, cloud providers, and email services rely on.

Laravel Starter Kits

https://1v0.net/blog/implementing-two-factor-authentication-in-laravel/
https://1v0.net/blog/implementing-two-factor-authentication-in-laravel/
https://1v0.net

1v02E

2 - Prerequisites

» A fresh Laravel 12 project with authentication set up (see our Authentication in
Laravel 12 (Without Fortify) guide if you don’t have login yet).

» Composer installed on your system.

» Node.js (optional if you want to compile assets, Bootstrap Ul, etc.).

3 - Install Google2FA Package

We’ll use the popular antonioribeiro/google2fa-laravel package, which makes
integrating TOTP-based 2FA easy in Laravel.

composer require pragmarx/google2fa-laravelCode language: JavaScript
(javascript)

Publish the config file:
php artisan vendor:publish --

provider="PragmaRX\Google2FALaravel\ServiceProvider"Code language:
JavaScript (javascript)

Laravel Starter Kits

https://1v0.net/blog/how-to-add-authentication-laravel-12
https://1v0.net/blog/how-to-add-authentication-laravel-12
https://1v0.net/blog/implementing-two-factor-authentication-in-laravel/
https://1v0.net

1v02E

4 - Update User Model & Database

We need to store whether a user has enabled 2FA and their secret key.

php artisan make:migration add two factor_columns_ to usersCode language:
CSS (css)

//
database/migrations/xxxx_Xx_ XX Xxxxxx_add two factor columns to users.

php

Schema: :table('users', function (Blueprint $table) {
$table->string('two factor secret')->nullable();
$table->boolean('two factor enabled')->default(false);

}) ; Code language: PHP (php)

php artisan migrate

Now each user can store a unique TOTP secret and whether they’ve activated 2FA.

5 - Generating QR Codes for Users

When a user enables 2FA, generate a secret key and display a QR code they can scan with
their Authenticator app.

Laravel Starter Kits

https://1v0.net/blog/implementing-two-factor-authentication-in-laravel/
https://1v0.net

1v02E

// app/Http/Controllers/TwoFactorController.php
namespace App\Http\Controllers;

use Illuminate\Http\Request;
use PragmaRX\Google2FAQRCode\Google2FA;

class TwoFactorController extends Controller
{
public function setup(Request $request)

{
$google2fa = app(Google2FA::class);

$secret = $google2fa->generateSecretKey();
$request->user()->update([

'two factor secret' => $secret,
1);

$grCodeUrl = $google2fa->getQRCodeInline(
'My Laravel App',
$request->user()->email,
$secret

);

return view('auth.2fa-setup', compact('qrCodeUrl'));

}
}Code language: PHP (php)

This creates a new secret for the user and a QR code they scan with Google Authenticator.
The app will then generate fresh codes every 30 seconds linked to that secret.

Laravel Starter Kits

https://1v0.net/blog/implementing-two-factor-authentication-in-laravel/
https://1v0.net

1v02E

6 - Verifying Codes During Login

After a user enters their email and password, check if they have 2FA enabled. If so, redirect
them to a form where they must input their 6-digit code.

// app/Http/Controllers/Auth/LoginController.php

public function authenticated(Request $request, $user)

{

if ($user->two factor enabled) {
Auth::logout();
session(['2fa:user:id' => $user->id]);
return redirect()->route('2fa.verify');

}

return redirect()->intended('/dashboard');
}Code language: PHP (php)

This temporarily logs the user out until they verify their code. Now we create the
verification screen.

// routes/web.php
Route::get('/2fa/verify', [TwoFactorController::class,
‘showVerifyForm'])->name('2fa.verify');

Route::post('/2fa/verify', [TwoFactorController::class, 'verify']);Code
language: PHP (php)

In the controller:

use PragmaRX\Google2FA\Google2FA;

public function showVerifyForm()

{

return view('auth.2fa-verify');

}

public function verify(Request $request)

{

Laravel Starter Kits

https://1v0.net/blog/implementing-two-factor-authentication-in-laravel/
https://1v0.net

1v02E

$request->validate(['code' => 'required|digits:6']);
$user = User::findOrFail(session('2fa:user:id'));
$google2fa = new Google2FA();

if ($google2fa->verifyKey($user->two factor secret,
$request->code)) {
Auth::login($user);
session()->forget('2fa:user:id');
return redirect('/dashboard');

}

return back()->withErrors(['code' => 'Invalid verification

code.']);
}Code language: PHP (php)

The verifyKey method checks if the 6-digit code matches the user’s secret and the current

time window. If valid, the user is logged in fully.

7 - User Interface for 2FA

Here’s a simple Bootstrap-based setup page:

// resources/views/auth/2fa-setup.blade.php
@extends('layouts.app')

@section('content')

<div class="container">
<h2>Set up Two-Factor Authentication</h2>

Laravel Starter Kits

https://1v0.net/blog/implementing-two-factor-authentication-in-laravel/
https://1v0.net

1v02E

<p>Scan this QR code with Google Authenticator or Authy:</p>
<div>{!! $qrCodeUrl !!}</div>

<p class="mt-3 text-muted">0nce scanned, your app will generate 6-
digit codes you’ll use to verify logins.</p>
</div>
@endsectionCode language: PHP (php)

And the verification page:

// resources/views/auth/2fa-verify.blade.php
@extends('layouts.app')

@section('content')
<div class="container">
<h2>Two-Factor Verification</h2>
<form method="POST" action="{{ route('2fa.verify') }}" class="card
card-body">
@csrf
<input type="text" name="code" placeholder="Enter 6-digit code"
class="form-control mb-2" required>
@error('code') <div class="text-danger">{{ $message }}</div>
@enderror
<button class="btn btn-primary">Verify</button>
</form>
</div>
@endsectionCode language: PHP (php)

The Ul makes it clear: scan, then verify. Users see a straightforward flow, which is key to
adoption.

Laravel Starter Kits

https://1v0.net/blog/implementing-two-factor-authentication-in-laravel/
https://1v0.net

1v02E

8 - Common Issues with 2FA

» Time mismatch: If server and phone clocks differ, codes fail. Always sync server time
with NTP.

» Backup codes: Offer users recovery codes in case they lose their phone.

» User experience: Clearly explain what 2FA is, how to scan the QR code, and how to
use codes.

» Session handling: Remember to clear temporary session data after verification.

Wrapping Up

You've now implemented Two-Factor Authentication in Laravel 12. We covered what
2FA is, why it matters, how to generate QR codes, and how to verify login codes securely.
With this feature, your app gains an extra shield against password theft and unauthorized
access.

For related improvements, see our Laravel authentication guide and our validation rules
tutorial. Together with 2FA, these give your app strong, modern security foundations.

Next Steps

Now that you've added basic Two-Factor Authentication in Laravel 12, you can take

Laravel Starter Kits

https://1v0.net/blog/how-to-add-authentication-laravel-12
https://1v0.net/blog/mastering-validation-rules-laravel-12
https://1v0.net/blog/mastering-validation-rules-laravel-12
https://1v0.net/blog/implementing-two-factor-authentication-in-laravel/
https://1v0.net

1v02E

security and usability further with these improvements:

» Recovery Codes: Provide backup codes so users can log in if they lose access to their
phone.

o SMS or Email 2FA: Extend 2FA to also allow one-time codes sent via text message or
email.

* Device Remembering: Let trusted devices skip 2FA for a set number of days,
improving UX.

» Fortify or Breeze Integration: If you use Laravel Fortify or Breeze, integrate 2FA
into their authentication scaffolding.

e Admin Enforcement: Add a setting to require 2FA for all admin users or high-
privilege roles.

» User Education: Include tooltips or short guides in your Ul explaining what 2FA is
and why it’s important.

These additions help create a robust, production-ready Laravel 12 authentication system
with 2FA, ensuring both strong security and a smooth user experience.

Laravel Starter Kits

https://1v0.net/blog/implementing-two-factor-authentication-in-laravel/
https://1v0.net

