
Laravel Starter Kits

Laravel and Docker: Setting Up a Scalable Dev
Environment

Laravel and Docker: Setting Up a Scalable Dev
Environment
Docker has become the standard for creating consistent, portable development
environments. Instead of “it works on my machine,” Docker ensures your Laravel app runs
the same way everywhere—on your laptop, staging server, or production cluster. In this
guide, we’ll containerize Laravel, configure services like MySQL and Redis, and run the app
in a scalable setup.

1 – Install Docker & Docker Compose
First, ensure you have Docker Engine and Docker Compose installed. Docker Compose lets
you run multiple containers (Laravel app, MySQL, Redis, Nginx) together.

Check Docker
docker -v
Check Compose
docker compose versionCode language: Bash (bash)

If these commands print version numbers, you’re good to go. Otherwise, download from
Docker Desktop.

https://1v0.net/blog/laravel-and-docker-setting-up-a-scalable-dev-environment/
https://1v0.net/blog/laravel-and-docker-setting-up-a-scalable-dev-environment/
https://www.docker.com/products/docker-desktop
https://1v0.net/blog/laravel-and-docker-setting-up-a-scalable-dev-environment/
https://1v0.net

Laravel Starter Kits

2 – Create a Dockerfile for Laravel
The Dockerfile defines how the Laravel container is built.

Dockerfile
FROM php:8.3-fpm

Install system dependencies
RUN apt-get update && apt-get install -y \
 git curl libpng-dev libonig-dev libxml2-dev zip unzip \
 && docker-php-ext-install pdo_mysql mbstring exif pcntl bcmath gd

Install Composer
COPY --from=composer:2.7 /usr/bin/composer /usr/bin/composer

WORKDIR /var/www

COPY . .

RUN composer install --no-dev --optimize-autoloader

CMD ["php-fpm"]Code language: Dockerfile (dockerfile)

This builds a PHP-FPM container with Composer and required extensions. The app code is
copied inside /var/www, ready to run.

3 – Define docker-compose.yml
Docker Compose orchestrates multiple containers: Laravel (PHP-FPM), MySQL, Redis, and
Nginx as a reverse proxy.

docker-compose.yml

https://1v0.net/blog/laravel-and-docker-setting-up-a-scalable-dev-environment/
https://1v0.net

Laravel Starter Kits

version: '3.8'

services:
 app:
 build:
 context: .
 dockerfile: Dockerfile
 volumes:
 - .:/var/www
 networks:
 - laravel
 depends_on:
 - db
 - redis

 db:
 image: mysql:8.0
 environment:
 MYSQL_DATABASE: laravel
 MYSQL_ROOT_PASSWORD: root
 volumes:
 - dbdata:/var/lib/mysql
 networks:
 - laravel

 redis:
 image: redis:alpine
 networks:
 - laravel

 nginx:
 image: nginx:alpine
 volumes:
 - .:/var/www
 - ./nginx.conf:/etc/nginx/conf.d/default.conf
 ports:
 - "8000:80"
 networks:

https://1v0.net/blog/laravel-and-docker-setting-up-a-scalable-dev-environment/
https://1v0.net

Laravel Starter Kits

 - laravel
 depends_on:
 - app

volumes:
 dbdata:

networks:
 laravel:Code language: YAML (yaml)

This defines four services: app (Laravel), db (MySQL), redis, and nginx. The app depends
on Redis and DB to start correctly. Nginx proxies requests to the app container.

4 – Configure Nginx
Add an Nginx config to route traffic into the Laravel container.

nginx.conf
server {
 listen 80;
 index index.php index.html;
 root /var/www/public;

 location / {
 try_files $uri $uri/ /index.php?$query_string;
 }

 location ~ \.php$ {
 fastcgi_pass app:9000;
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME
$document_root$fastcgi_script_name;
 fastcgi_index index.php;

https://1v0.net/blog/laravel-and-docker-setting-up-a-scalable-dev-environment/
https://1v0.net

Laravel Starter Kits

 }
}Code language: Nginx (nginx)

This config sends PHP requests to the app container (running PHP-FPM) and serves static
assets directly. It mirrors production best practices.

5 – Run Containers
Start your Laravel environment with:

docker compose up -d --buildCode language: Bash (bash)

This builds containers and runs them in the background. Visit http://localhost:8000 to
access your Laravel app inside Docker.

6 – Scaling with Docker
One of Docker’s strengths is scaling services horizontally. You can run multiple Laravel
containers behind Nginx:

docker compose up --scale app=3 -dCode language: Bash (bash)

This runs three Laravel app containers in parallel, balancing requests through Nginx.
Perfect for high-concurrency setups, especially when combined with Octane.

https://1v0.net/blog/optimizing-laravel-for-high-concurrency-with-octane
https://1v0.net/blog/laravel-and-docker-setting-up-a-scalable-dev-environment/
https://1v0.net

Laravel Starter Kits

Wrapping Up
You’ve containerized Laravel with Docker, set up MySQL, Redis, and Nginx, and even scaled
app containers horizontally. This setup ensures every developer runs the same environment
and makes production deployment smoother. For even more scalability, integrate Docker
with AWS ECS, Kubernetes, or DigitalOcean Droplets.

What’s Next
10 Proven Ways to Optimize Laravel for High Traffic — combine Docker scaling with
caching and queues.
Optimizing Laravel for High Concurrency with Octane — supercharge Dockerized apps
with in-memory request handling.
Optimizing Laravel for AWS Deployment (Step-by-Step) — deploy your Dockerized
Laravel app in the cloud.

https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic
https://1v0.net/blog/optimizing-laravel-for-high-concurrency-with-octane
https://1v0.net/blog/optimizing-laravel-for-aws-deployment-step-by-step
https://1v0.net/blog/laravel-and-docker-setting-up-a-scalable-dev-environment/
https://1v0.net

