
Laravel Starter Kits

Laravel Authentication: How to Redirect Users After
Login & Logout
After setting up authentication, one of the most common requirements is controlling where
users are redirected after they log in or log out. By default, Laravel redirects users to
/home after login and back to / after logout. But in real applications, you’ll often want more
control — such as sending admins to a dashboard, regular users to their profile page, or
guests back to a landing page.

In this guide, we’ll explore how to customize Laravel 12 authentication redirects. We’ll
cover login redirects, logout redirects, role-based redirection, and even protecting against
infinite redirect loops. You’ll see code samples and explanations to ensure you can
implement this feature confidently.

1 – The Default Redirect (Login)
Laravel uses the RedirectsUsers trait inside the built-in LoginController to decide
where to send users after login. By default, it points to /home.

// app/Http/Controllers/Auth/LoginController.php

protected $redirectTo = '/home';Code language: PHP (php)

You can change this to any route or path, for example:

protected $redirectTo = '/dashboard';Code language: PHP (php)

This is the simplest way to control post-login redirection globally for all users.

https://1v0.net/blog/laravel-authentication-how-to-redirect-users-after-login-logout/
https://1v0.net/blog/laravel-authentication-how-to-redirect-users-after-login-logout/
https://1v0.net/blog/laravel-authentication-how-to-redirect-users-after-login-logout/
https://1v0.net

Laravel Starter Kits

2 – Dynamic Redirects (Role-Based or Conditional)
Often, different users should land on different pages depending on their role. Instead of a
static $redirectTo, you can override the redirectTo() method:

// app/Http/Controllers/Auth/LoginController.php

protected function redirectTo()
{
 if (auth()->user()->hasRole('admin')) {
 return '/admin/dashboard';
 }

 return '/user/profile';
}Code language: PHP (php)

Here, admins are redirected to an admin dashboard, while regular users land on their
profile page. You can customize this based on roles, permissions, or even subscription
status.

3 – Redirecting After Logout
By default, Laravel redirects to / after logout. To change this, you can override the
loggedOut method in the LoginController:

// app/Http/Controllers/Auth/LoginController.php

https://1v0.net/blog/laravel-authentication-how-to-redirect-users-after-login-logout/
https://1v0.net

Laravel Starter Kits

protected function loggedOut(Request $request)
{
 return redirect('/goodbye');
}Code language: PHP (php)

This example sends users to a /goodbye page after logout. You can point this to a landing
page, marketing page, or even a “logged out successfully” message.

4 – Redirecting Intended Users
Laravel includes a built-in “intended” feature that remembers where a guest tried to go
before being redirected to the login page. After login, they’ll automatically go back there
unless you override it. Example:

// app/Http/Controllers/Auth/LoginController.php

protected function authenticated(Request $request, $user)
{
 return redirect()->intended('/dashboard');
}Code language: PHP (php)

If no intended page exists, users will land on /dashboard instead. This ensures seamless
UX — especially when protecting routes with auth middleware.

https://1v0.net/blog/laravel-authentication-how-to-redirect-users-after-login-logout/
https://1v0.net

Laravel Starter Kits

5 – Protecting Against Redirect Loops
Be careful not to redirect users to a route that itself requires authentication. For example, if
you redirect logged-out users back to /dashboard, they’ll just hit the login screen again in
a loop.

Always ensure your logout redirect points to a public page, like /, /goodbye, or /thanks.

Wrapping Up
You now know how to customize Laravel 12 authentication redirects for both login and
logout. We saw how to set a global redirect, create dynamic role-based redirects, override
logout behavior, and use Laravel’s intended feature for smarter flows. With these
techniques, you can tailor the authentication flow to match your app’s UX perfectly.

What’s Next
How to Restrict Page Access by Role in Laravel 12 — redirect users away from pages
they can’t access.
Implementing Passwordless Authentication in Laravel 12 — modernize login UX even
further.
Implementing Two-Factor Authentication in Laravel — add stronger login security.

https://1v0.net/blog/how-to-restrict-page-access-by-role-in-laravel-12
https://1v0.net/blog/implementing-passwordless-authentication-in-laravel-12
https://1v0.net/blog/implementing-two-factor-authentication-in-laravel
https://1v0.net/blog/laravel-authentication-how-to-redirect-users-after-login-logout/
https://1v0.net

