1v02E

Laravel Authentication: How to Redirect Users After
Login & Logout

After setting up authentication, one of the most common requirements is controlling where
users are redirected after they log in or log out. By default, Laravel redirects users to
/home after login and back to / after logout. But in real applications, you’ll often want more
control — such as sending admins to a dashboard, regular users to their profile page, or
guests back to a landing page.

In this guide, we’ll explore how to customize Laravel 12 authentication redirects. We’ll
cover login redirects, logout redirects, role-based redirection, and even protecting against
infinite redirect loops. You'll see code samples and explanations to ensure you can
implement this feature confidently.

1 - The Default Redirect (Login)

Laravel uses the RedirectsUsers trait inside the built-in LoginController to decide
where to send users after login. By default, it points to /home.

// app/Http/Controllers/Auth/LoginController.php
protected $redirectTo = '/home';Code language: PHP (php)

You can change this to any route or path, for example:

protected $redirectTo = '/dashboard';Code language: PHP (php)

This is the simplest way to control post-login redirection globally for all users.

Laravel Starter Kits


https://1v0.net/blog/laravel-authentication-how-to-redirect-users-after-login-logout/
https://1v0.net/blog/laravel-authentication-how-to-redirect-users-after-login-logout/
https://1v0.net/blog/laravel-authentication-how-to-redirect-users-after-login-logout/
https://1v0.net

1v02E

2 - Dynamic Redirects (Role-Based or Conditional)

Often, different users should land on different pages depending on their role. Instead of a
static $redirectTo, you can override the redirectTo() method:

// app/Http/Controllers/Auth/LoginController.php

protected function redirectTo()

{
if (auth()->user()->hasRole('admin')) {
return '/admin/dashboard';

}

return '/user/profile';
}Code language: PHP (php)

Here, admins are redirected to an admin dashboard, while regular users land on their
profile page. You can customize this based on roles, permissions, or even subscription
status.

3 - Redirecting After Logout

By default, Laravel redirects to / after logout. To change this, you can override the
loggedOut method in the LoginController:

// app/Http/Controllers/Auth/LoginController.php

Laravel Starter Kits


https://1v0.net/blog/laravel-authentication-how-to-redirect-users-after-login-logout/
https://1v0.net

1v02E

protected function loggedOut(Request $request)
{

return redirect('/goodbye');
}Code language: PHP (php)

This example sends users to a /goodbye page after logout. You can point this to a landing
page, marketing page, or even a “logged out successfully” message.

4 - Redirecting Intended Users

Laravel includes a built-in “intended” feature that remembers where a guest tried to go
before being redirected to the login page. After login, they’ll automatically go back there
unless you override it. Example:

// app/Http/Controllers/Auth/LoginController.php

protected function authenticated(Request $request, $user)

{

return redirect()->intended('/dashboard');
}Code language: PHP (php)

If no intended page exists, users will land on /dashboard instead. This ensures seamless
UX — especially when protecting routes with auth middleware.

Laravel Starter Kits


https://1v0.net/blog/laravel-authentication-how-to-redirect-users-after-login-logout/
https://1v0.net

1v02E

5 - Protecting Against Redirect Loops

Be careful not to redirect users to a route that itself requires authentication. For example, if
you redirect logged-out users back to /dashboard, they’ll just hit the login screen again in
a loop.

Always ensure your logout redirect points to a public page, like /, /goodbye, or /thanks.

Wrapping Up

You now know how to customize Laravel 12 authentication redirects for both login and
logout. We saw how to set a global redirect, create dynamic role-based redirects, override
logout behavior, and use Laravel’s intended feature for smarter flows. With these
techniques, you can tailor the authentication flow to match your app’s UX perfectly.

What’s Next

» How to Restrict Page Access by Role in Laravel 12 — redirect users away from pages
they can’t access.

» Implementing Passwordless Authentication in Laravel 12 — modernize login UX even
further.

» Implementing Two-Factor Authentication in Laravel — add stronger login security.

Laravel Starter Kits


https://1v0.net/blog/how-to-restrict-page-access-by-role-in-laravel-12
https://1v0.net/blog/implementing-passwordless-authentication-in-laravel-12
https://1v0.net/blog/implementing-two-factor-authentication-in-laravel
https://1v0.net/blog/laravel-authentication-how-to-redirect-users-after-login-logout/
https://1v0.net

