
Laravel Starter Kits

Laravel Deployment Checklist for 2025

Laravel Deployment Checklist for 2025
Deploying a Laravel 12 application is more than just copying files to a server. A proper
deployment process ensures performance, security, and maintainability in production. This
checklist will help you avoid common pitfalls and ship your Laravel apps with confidence in
2025.

1 — Environment Configuration
.env (production) APP_ENV=production APP_DEBUG=false
APP_URL=https://yourdomain.com LOG_CHANNEL=stack DB_CONNECTION=mysql
DB_HOST=127.0.0.1 DB_PORT=3306 DB_DATABASE=your_database
DB_USERNAME=your_user DB_PASSWORD=your_password

Always disable APP_DEBUG in production to avoid exposing sensitive stack traces (see How
to Prevent CSRF, XSS, and SQL Injection in Laravel Apps for more security tips).

2 — Cache Config, Routes & Views
Optimize config, routes, and views
php artisan config:cache
php artisan route:cache
php artisan view:cacheCode language: Bash (bash)

https://1v0.net/blog/laravel-deployment-checklist-for-2025/
https://1v0.net/blog/how-to-prevent-csrf-xss-and-sql-injection-in-laravel-apps
https://1v0.net/blog/how-to-prevent-csrf-xss-and-sql-injection-in-laravel-apps
https://1v0.net/blog/laravel-deployment-checklist-for-2025/
https://1v0.net

Laravel Starter Kits

This ensures Laravel loads configuration, routes, and views directly from cached files,
reducing filesystem lookups. Learn more in 10 Proven Ways to Optimize Laravel for High
Traffic.

3 — Queue & Scheduler Setup
Supervisor config for queue workers (example)
[program:laravel-worker]
process_name=%(program_name)s_%(process_num)02d
command=php /var/www/current/artisan queue:work --sleep=3 --tries=3 --
max-time=3600
autostart=true
autorestart=true
numprocs=3
redirect_stderr=true
stdout_logfile=/var/www/current/storage/logs/worker.logCode language:
Bash (bash)

Queue workers should always be monitored by a process manager like Supervisor. This
ensures failed jobs can be retried and workers restart if they crash. For more advanced
queue monitoring, see How to Use Laravel Horizon for Queue Monitoring.

4 — File Storage & Symbolic Links
Make sure your storage and bootstrap/cache folders are writable. Then link
storage/app/public to public/storage.

https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic
https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic
https://1v0.net/blog/how-to-use-laravel-horizon-for-queue-monitoring
https://1v0.net/blog/laravel-deployment-checklist-for-2025/
https://1v0.net

Laravel Starter Kits

php artisan storage:link
sudo chown -R www-data:www-data /var/www/current/storage
/var/www/current/bootstrap/cache
sudo chmod -R 775 /var/www/current/storage
/var/www/current/bootstrap/cacheCode language: Bash (bash)

This ensures user uploads (like images or documents) are accessible through the web
server. For a deep dive into secure file handling, check How to Prevent CSRF, XSS, and SQL
Injection in Laravel Apps and How to Build a Secure File Upload API in Laravel.

5 — Database Migration & Seeding
Run migrations in production (force required)
php artisan migrate --force

Optionally seed initial data
php artisan db:seed --forceCode language: Bash (bash)

Always run migrations with --force in production to apply schema changes without
prompts. If you’re working with multi-tenant setups, also see Building a Multi-Tenant App in
Laravel with Separate Databases for tenant-specific migrations.

6 — Add Security Headers & HTTPS
Use Nginx to enforce HTTPS and add HTTP security headers.

server {

https://1v0.net/blog/how-to-prevent-csrf-xss-and-sql-injection-in-laravel-apps
https://1v0.net/blog/how-to-prevent-csrf-xss-and-sql-injection-in-laravel-apps
https://1v0.net/blog/how-to-build-a-secure-file-upload-api-in-laravel
https://1v0.net/blog/building-a-multi-tenant-app-in-laravel-with-separate-databases
https://1v0.net/blog/building-a-multi-tenant-app-in-laravel-with-separate-databases
https://1v0.net/blog/laravel-deployment-checklist-for-2025/
https://1v0.net

Laravel Starter Kits

 listen 443 ssl http2;
 server_name your-domain.com;

 ssl_certificate /etc/letsencrypt/live/your-
domain.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/your-
domain.com/privkey.pem;

 add_header X-Frame-Options "SAMEORIGIN";
 add_header X-Content-Type-Options "nosniff";
 add_header Referrer-Policy "strict-origin-when-cross-origin";
 add_header Content-Security-Policy "default-src 'self'";

 root /var/www/current/public;
 index index.php index.html;
}Code language: Nginx (nginx)

Certificates can be managed with Let’s Encrypt for free. If you’re using AWS or
DigitalOcean, see How to Deploy a Laravel 12 App on DigitalOcean or Deploying Laravel on
AWS: Complete Guide (2025) for infrastructure-specific instructions.

7 — Deployment Sanity Check UI
Add a simple admin-only endpoint to confirm Nginx headers, HTTPS, and storage access are
all functioning correctly.

// routes/web.php
use Illuminate\\Support\\Facades\\Route;

Route::middleware(['auth','can:viewAdmin'])->get('/admin/deployment-
check', function () {
 return view('admin.deployment-check', [
 'phpVersion' => phpversion(),

https://1v0.net/blog/how-to-deploy-a-laravel-12-app-on-digitalocean
https://1v0.net/blog/deploying-laravel-on-aws-complete-guide-2025
https://1v0.net/blog/deploying-laravel-on-aws-complete-guide-2025
https://1v0.net/blog/laravel-deployment-checklist-for-2025/
https://1v0.net

Laravel Starter Kits

 'laravelEnv' => app()->environment(),
 'isSecure' => request()->isSecure(),
 'clientIp' => request()->ip(),
 'cachePathWritable' =>
is_writable(storage_path('framework/cache')),
]);
});Code language: PHP (php)

This creates a page that shows the PHP version, Laravel environment, whether HTTPS is
active, the detected client IP (to confirm real_ip works), and whether cache directories
are writable. Only admins should have access to this page.

<!-- resources/views/admin/deployment-check.blade.php -->
@extends('layouts.app')
@section('content')
<div class="container">
 <h1 class="mb-4">Deployment Health Check</h1>
 <ul class="list-group">
 <li class="list-group-item">PHP Version: {{
$phpVersion }}
 <li class="list-group-item">Environment: {{
$laravelEnv }}
 <li class="list-group-item">HTTPS Enabled: {{
$isSecure ? 'Yes' : 'No' }}
 <li class="list-group-item">Client IP: {{
$clientIp }}
 <li class="list-group-item">Cache Writable: {{
$cachePathWritable ? 'Yes' : 'No' }}

</div>
@endsectionCode language: HTML, XML (xml)

This dashboard view provides instant feedback on whether your Laravel app is healthy and
properly configured in production.

https://1v0.net/blog/laravel-deployment-checklist-for-2025/
https://1v0.net

Laravel Starter Kits

Wrapping Up
By combining Nginx with Laravel 12, you get a fast and reliable production setup. Key steps
include configuring the server block, enabling caching, ensuring HTTPS, tuning PHP-FPM,
and monitoring your application. For more advanced scenarios, you can explore
containerized setups or automated deployment tools.

What’s Next
Laravel Deployment Checklist for 2025 — a complete pre-launch checklist to avoid
common mistakes.
Optimizing Laravel for AWS Deployment (Step-by-Step) — learn how to scale Laravel
with AWS and integrate load balancers.
Automating Laravel Deployments with Deployer — take your deployments to the next
level with zero-downtime automation.

https://1v0.net/blog/laravel-deployment-checklist-for-2025
https://1v0.net/blog/optimizing-laravel-for-aws-deployment-step-by-step
https://1v0.net/blog/automating-laravel-deployments-with-deployer
https://1v0.net/blog/laravel-deployment-checklist-for-2025/
https://1v0.net

