
Laravel Starter Kits

Laravel Eloquent Relationships Explained with
Examples
One of the most powerful features of Laravel 12 is its Eloquent ORM. With Eloquent, you
don’t have to write complex SQL joins to connect your data models. Instead, you define
relationships between models, and Laravel makes querying related data simple and
expressive.

In this guide, we’ll cover the five major Eloquent relationships — one-to-one, one-to-
many, many-to-many, has-many-through, and polymorphic — with full examples
including migrations, model methods, queries, and Blade UI snippets. After each code block,
you’ll find a clear explanation so beginners won’t get lost.

1 – One to One Relationship
A one-to-one relationship means one record in a table is related to exactly one record in
another table. Example: every User has exactly one Profile.

// Migration: create_profiles_table.php
Schema::create('profiles', function (Blueprint $table) {
 $table->id();
 $table->foreignId('user_id')->constrained()->onDelete('cascade');
 $table->string('bio')->nullable();
 $table->timestamps();
});Code language: PHP (php)

This migration creates a profiles table with a user_id foreign key. constrained() sets
the reference to users.id. onDelete('cascade') removes the profile when its user is
deleted to keep data consistent.

https://1v0.net/blog/laravel-eloquent-relationships-explained-with-examples/
https://1v0.net/blog/laravel-eloquent-relationships-explained-with-examples/
https://1v0.net/blog/laravel-eloquent-relationships-explained-with-examples/
https://1v0.net

Laravel Starter Kits

// app/Models/User.php
public function profile()
{
 return $this->hasOne(Profile::class);
}

// app/Models/Profile.php
public function user()
{
 return $this->belongsTo(User::class);
}Code language: PHP (php)

hasOne defines the “owner” side (User → Profile). belongsTo defines the inverse (Profile →
User). Eloquent infers the foreign key user_id from the model names.

// Query + Blade
$user = User::with('profile')->find(1);
$bio = optional($user->profile)->bio;

// Blade
<p>Bio: {{ optional($user->profile)->bio }}</p>Code language: PHP (php)

with('profile') eager-loads the related profile to avoid N+1 queries. optional()
prevents errors if a user has no profile yet.

2 – One to Many Relationship
A one-to-many relationship is when one record can have multiple related records.
Example: a Post has many Comment entries.

// Migration: create_comments_table.php
Schema::create('comments', function (Blueprint $table) {

https://1v0.net/blog/laravel-eloquent-relationships-explained-with-examples/
https://1v0.net

Laravel Starter Kits

 $table->id();
 $table->foreignId('post_id')->constrained()->onDelete('cascade');
 $table->text('body');
 $table->timestamps();
});Code language: PHP (php)

Each comment points to its post using post_id. When a post is deleted, its comments are
cleaned up automatically.

// app/Models/Post.php
public function comments()
{
 return $this->hasMany(Comment::class);
}

// app/Models/Comment.php
public function post()
{
 return $this->belongsTo(Post::class);
}Code language: PHP (php)

hasMany indicates a parent with multiple children. belongsTo defines the child pointing
back to the parent. Eloquent assumes post_id as the foreign key.

// Query + Blade
$post = Post::with('comments')->find(1);

@foreach($post->comments as $comment)
 <p>{{ $comment->body }}</p>
@endforeachCode language: PHP (php)

We eager-load comments to avoid a query per comment. The Blade loop renders all related
comments efficiently.

https://1v0.net/blog/laravel-eloquent-relationships-explained-with-examples/
https://1v0.net

Laravel Starter Kits

3 – Many to Many Relationship
A many-to-many relationship allows multiple records on both sides to be related. Classic
example: Post ↔ Tag. A post can have many tags, and a tag can belong to many posts,
typically using a pivot table post_tag.

// Migration: create_tags_and_post_tag_tables.php
Schema::create('tags', function (Blueprint $table) {
 $table->id();
 $table->string('name')->unique();
 $table->timestamps();
});

Schema::create('post_tag', function (Blueprint $table) {
 $table->id();
 $table->foreignId('post_id')->constrained()->onDelete('cascade');
 $table->foreignId('tag_id')->constrained()->onDelete('cascade');
 $table->timestamps();
});Code language: PHP (php)

We create the tags table and a pivot table post_tag that references both posts and
tags. The pivot holds the relationships.

// app/Models/Post.php
public function tags()
{
 return $this->belongsToMany(Tag::class);
}

// app/Models/Tag.php
public function posts()
{
 return $this->belongsToMany(Post::class);
}Code language: PHP (php)

belongsToMany tells Eloquent to use a pivot table. By convention it expects post_tag. If
you use a different name, pass it as the second argument.

// Attaching / syncing tags

https://1v0.net/blog/laravel-eloquent-relationships-explained-with-examples/
https://1v0.net

Laravel Starter Kits

$post = Post::find(1);
$post->tags()->attach([1, 3]); // add relationships
$post->tags()->sync([2, 3, 5]); // make the set exactly [2,3,5]
$post->tags()->detach([1]); // remove relationships

// Query + Blade
$post = Post::with('tags')->find(1);

@foreach($post->tags as $tag)
 {{ $tag->name }}
@endforeachCode language: HTML, XML (xml)

attach adds new pivot rows; detach removes them; sync replaces the entire set. Eager-
loading keeps queries minimal.

4 – Has Many Through
Has-many-through lets you access a distant relationship through an intermediate model.
Example: a Country has many Posts through User (Country → Users → Posts). You can
fetch all posts for a country without manually joining users.

// Example tables
// countries: id, name
// users: id, country_id, name, ...
// posts: id, user_id, title, ...

// app/Models/Country.php
public function posts()
{
 return $this->hasManyThrough(
 Post::class, // final model
 User::class, // through / intermediate model

https://1v0.net/blog/laravel-eloquent-relationships-explained-with-examples/
https://1v0.net

Laravel Starter Kits

 'country_id', // Foreign key on users table...
 'user_id', // Foreign key on posts table...
 'id', // Local key on countries table...
 'id' // Local key on users table...
);
}Code language: PHP (php)

hasManyThrough signature is (Final, Through, throughKey, finalKey,
localKey, throughLocalKey). Here, a country’s id matches users’ country_id, and
users’ id matches posts’ user_id.

// Query + Blade
$country = Country::with('posts')->find(1);

<h3>Posts from {{ $country->name }}</h3>
@foreach($country->posts as $post)
 <p>{{ $post->title }} by {{ $post->user->name }}</p>
@endforeachCode language: PHP (php)

With one relationship method, you jump across the users table to get all posts for a
country. This keeps your controllers simple.

5 – Polymorphic Relationships
Polymorphic relationships allow a model to belong to more than one type of model using a
single association. Common use cases: a universal Comment or Like model that can attach
to Post, Video, Photo, etc.

5.1 – One-to-Many Polymorphic (comments on posts & videos)

// Migration: create_comments_table.php
Schema::create('comments', function (Blueprint $table) {

https://1v0.net/blog/laravel-eloquent-relationships-explained-with-examples/
https://1v0.net

Laravel Starter Kits

 $table->id();
 $table->morphs('commentable'); // creates commentable_id (bigint)
& commentable_type (string)
 $table->text('body');
 $table->timestamps();
});Code language: PHP (php)

morphs('commentable') creates two columns that together define the parent model
(e.g., Post or Video) and the parent id. The same table can store comments for multiple
models.

// app/Models/Comment.php
public function commentable()
{
 return $this->morphTo();
}

// app/Models/Post.php
public function comments()
{
 return $this->morphMany(Comment::class, 'commentable');
}

// app/Models/Video.php
public function comments()
{
 return $this->morphMany(Comment::class, 'commentable');
}Code language: PHP (php)

morphTo is used on the child (Comment) to point to any parent. Each possible parent model
(Post, Video) declares morphMany with the same “morph name” (commentable).

// Usage + Blade
$post = Post::with('comments')->find(1);
$video = Video::with('comments')->find(5);

@foreach($post->comments as $c)
 <p>Post comment: {{ $c->body }}</p>
@endforeach

https://1v0.net/blog/laravel-eloquent-relationships-explained-with-examples/
https://1v0.net

Laravel Starter Kits

@foreach($video->comments as $c)
 <p>Video comment: {{ $c->body }}</p>
@endforeachCode language: PHP (php)

Same comments table, two different parents. Eloquent keeps it consistent with the
commentable_type and commentable_id columns.

5.2 – Many-to-Many Polymorphic (tags for posts & videos)

// Migration: create_tags_and_taggables.php
Schema::create('tags', function (Blueprint $table) {
 $table->id();
 $table->string('name')->unique();
 $table->timestamps();
});

Schema::create('taggables', function (Blueprint $table) {
 $table->id();
 $table->foreignId('tag_id')->constrained()->onDelete('cascade');
 $table->morphs('taggable'); // taggable_id + taggable_type
 $table->timestamps();
});Code language: PHP (php)

The taggables table connects a tag to any taggable model (post, video, etc.). This lets you
reuse one tagging system application-wide.

// app/Models/Tag.php
public function posts()
{
 return $this->morphedByMany(Post::class, 'taggable');
}

public function videos()
{
 return $this->morphedByMany(Video::class, 'taggable');
}

// app/Models/Post.php
public function tags()

https://1v0.net/blog/laravel-eloquent-relationships-explained-with-examples/
https://1v0.net

Laravel Starter Kits

{
 return $this->morphToMany(Tag::class, 'taggable');
}

// app/Models/Video.php
public function tags()
{
 return $this->morphToMany(Tag::class, 'taggable');
}Code language: PHP (php)

On the “thing being tagged” (Post/Video), use morphToMany. On the Tag side, use
morphedByMany for each taggable type. Eloquent handles the morph columns
automatically.

// Usage + Blade
$post = Post::with('tags')->find(1);
$video = Video::with('tags')->find(1);

@foreach($post->tags as $tag)
 #{{ $tag->name }}
@endforeach

@foreach($video->tags as $tag)
 #{{ $tag->name }}
@endforeachCode language: HTML, XML (xml)

You can attach/detach/sync tags using the relationship just like a normal many-to-many, but
now polymorphic across different models.

https://1v0.net/blog/laravel-eloquent-relationships-explained-with-examples/
https://1v0.net

Laravel Starter Kits

Wrapping Up
You’ve learned the essential Eloquent relationships in Laravel 12 with practical, copy-paste
examples: one-to-one (User–Profile), one-to-many (Post–Comments), many-to-many
(Post–Tags), has-many-through (Country–Posts through Users), and polymorphic
(Comments/Tags across multiple models). With these in your toolbox, you can model most
real-world data cleanly and query it efficiently — while keeping your controllers and views
simple.

What’s Next
Eager Loading vs Lazy Loading in Laravel: Best Practices
How to Use Laravel Query Scopes for Cleaner Code
Filtering and Searching with Laravel Eloquent Query Builder

https://1v0.net/blog/eager-loading-vs-lazy-loading-in-laravel-best-practices
https://1v0.net/blog/how-to-use-laravel-query-scopes-for-cleaner-code
https://1v0.net/blog/filtering-and-searching-with-laravel-eloquent-query-builder
https://1v0.net/blog/laravel-eloquent-relationships-explained-with-examples/
https://1v0.net

