1v02E

Laravel Fortify 2FA Example: Enable, Challenge,
Recovery Codes (Step by Step)

Laravel Fortify provides a headless authentication backend, including built-in Two-Factor
Authentication (2FA) with time-based one-time passwords (TOTP). In this guide, you'll
install and configure Fortify, enable 2FA, build minimal Blade views for enabling/disabling
2FA, display QR codes and recovery codes, handle the two-factor challenge at login, wire
useful events, and test the flow end-to-end.

Install & Register Laravel Fortify

composer require laravel/fortifyCode language: Bash (bash)

This installs Fortify into your Laravel app. Fortify exposes authentication routes and actions
(login, logout, 2FA enable/disable, challenges) without generating Ul scaffolding.

php artisan vendor:publish --
provider="Laravel\Fortify\FortifyServiceProvider"Code language: Bash (bash)

Publishing copies the Fortify configuration file, migrations, and language lines to your
project so you can customize them (including the 2FA-related columns).

// config/app.php (ensure provider is registered if not auto-
discovered)
‘providers' => [
/] ...
App\Providers\FortifyServiceProvider::class,
], Code language: PHP (php)

Fortify is typically registered via your own App\Providers\FortifyServiceProvider
so you can define views and behaviors. If you don’t have it, create and register it as above.

Laravel Starter Kits

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

1v02E

php artisan migrateCode language: Bash (bash)

Run migrations to ensure 2FA columns exist on the users table. The published migration
adds two_factor secret, two factor recovery codes, and timestamps needed for
2FA.

Enable Two-Factor Authentication in Fortify

// config/fortify.php
use Laravel\Fortify\Features;

return [

// ...

'features' => |
Features::registration(),
Features: :resetPasswords(),
Features::emailVerification(),
Features: :twoFactorAuthentication([

"confirmPassword' => true,

1),

1,
] ; Code language: PHP (php)

Enabling Features: :twoFactorAuthentication() activates Fortify’s 2FA endpoints:
enabling/disabling 2FA, generating recovery codes, and challenging users during login
when 2FA is active.

// app/Providers/FortifyServiceProvider.php
namespace App\Providers;

use Illuminate\Support\ServiceProvider;
use Laravel\Fortify\Fortify;

Laravel Starter Kits

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

1v02E

class FortifyServiceProvider extends ServiceProvider
{

public function boot(): void

{

// Point Fortify to your custom Blade views:

Fortify::loginView(fn() => view('auth.login')); // your
existing login

Fortify::twoFactorChallengeView(fn() => view('auth.two-factor-
challenge'));

// You can set other views (register, reset, etc.) as needed.

}
}Code language: PHP (php)

Fortify is “headless”, so you must provide the login and two-factor challenge views. We will
create a minimal set of views next.

Profile Ul: Enable / Disable 2FA + Show QR & Recovery
Codes

Fortify exposes signed-in endpoints for enabling/disabling 2FA and regenerating recovery
codes. Here’s a simple Blade “Profile Security” section to manage 2FA on the frontend.

<!-- resources/views/profile/security.blade.php -->
@extends('layouts.app')

@section('content')
<h2>Two-Factor Authentication</h2>

@if (! auth()->user()->two factor secret)
<form method="POST" action="/user/two-factor-authentication">
@csrf
<button type="submit">Enable 2FA</button>

Laravel Starter Kits

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

1v02E

</form>
@else
<p>2FA is enabled on your account.</p>

<h3>Scan this QR code in your authenticator app</h3>
{!! auth()->user()->twoFactorQrCodeSvg() !'!'}

<h3 class="mt-3">Recovery Codes</h3>

@foreach (auth()->user()->recoveryCodes() as $code)
<code>{{ $code }}</code></1i>
@endforeach

<form method="POST" action="/user/two-factor-recovery-codes">
@csrf
<button type="submit">Regenerate Recovery Codes</button>
</form>

<form method="POST" action="/user/two-factor-authentication">
@csrf
@method ('DELETE")
<button type="submit" class="mt-3">Disable 2FA</button>
</form>
@endif
@endsectionCode language: PHP (php)

When 2FA is disabled, the form posts to /user/two-factor-authentication to enable
it. Once enabled, users see a QR SVG (scan with Google Authenticator, 1Password, Authy,
etc.) and recovery codes. They can regenerate codes or disable 2FA via the provided forms.

Laravel Starter Kits

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

1v02E

Two-Factor Challenge View (Login Step)

After a successful password login for a user with 2FA enabled, Fortify redirects to a
challenge page to enter the TOTP code or a recovery code. Create this Blade view and wire
it in your FortifyServiceProvider as shown earlier.

<!-- resources/views/auth/two-factor-challenge.blade.php -->
@extends('layouts.guest"')

@section('content')
<h1>Two-Factor Challenge</hl>

<form method="POST" action="/two-factor-challenge">
@csrf

<div>
<label>Authentication Code</label>
<input type="text" name="code" inputmode="numeric"
autocomplete="one-time-code">
</div>

<p>0r use a recovery code:</p>

<div>

<label>Recovery Code</label>

<input type="text" name="recovery code">
</div>

<button type="submit">Verify</button>

@error('code') <p class="text-danger">{{ $message }}</p> @enderror
@error('recovery code') <p class="text-danger">{{ $message }}</p>
@enderror
</form>
@endsectionCode language: PHP (php)

Posting to /two-factor-challenge tells Fortify to validate either the 6-digit code from
the authenticator app or a recovery code, completing the login flow.

Laravel Starter Kits

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

1v02E

Useful Events: Email Users When 2FA Changes

Fortify fires events when users enable/disable 2FA or regenerate recovery codes. You can
listen to these and notify users for security awareness.

// app/Providers/EventServiceProvider.php
protected $listen = [
\Laravel\Fortify\Events\TwoFactorAuthenticationEnabled::class => [
\App\Listeners\SendTwoFactorEnabledNotification::class,
1,
\Laravel\Fortify\Events\TwoFactorAuthenticationDisabled::class =>

\App\Listeners\SendTwoFactorDisabledNotification::class,
1,
\Laravel\Fortify\Events\RecoveryCodesGenerated::class => [
\App\Listeners\SendRecoveryCodesRegeneratedNotification::class,

1,
] ; Code language: PHP (php)

Registering listeners lets you send mail, Slack/Log notifications, or audit events whenever
2FA settings change.

// app/Listeners/SendTwoFactorEnabledNotification.php
namespace App\Listeners;

use Illuminate\Support\Facades\Mail;
use Laravel\Fortify\Events\TwoFactorAuthenticationEnabled;

class SendTwoFactorEnabledNotification

{
public function handle(TwoFactorAuthenticationEnabled $event):
void

{

Laravel Starter Kits

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

1v02E

$user = $event->user;
Mail::raw('Two-Factor Authentication was enabled on your
account.', function ($m) use ($user) {
$m->to($user->email)->subject('2FA Enabled');
});

}
}Code language: PHP (php)

This simple listener sends an email whenever a user enables 2FA. You can create similar
listeners for disabled and regenerated codes to keep users informed.

Controller Integration: Protect Critical Actions with
Password/2FA

Even with 2FA enabled, you might want to require recent password confirmation (and
therefore 2FA at login) before sensitive actions (like deleting an account). Fortify ships a
password confirmation route you can require via middleware.

// routes/web.php
Route::middleware(['auth', 'password.confirm'])->group(function () {
Route::delete('/account’,
[\App\Http\Controllers\AccountController::class, 'destroy'])
->name('account.destroy');
}) ;Code language: PHP (php)

Using password.confirm ensures the user recently re-entered their password (and has
passed 2FA on login). You can also build a custom flow to ask for a fresh TOTP if you prefer
a second check before a destructive action.

Laravel Starter Kits

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

1v02E

Feature Test: Happy Path for 2FA Challenge

This example shows how to simulate a user with 2FA enabled and verify that the two-factor
challenge gate works. In practice, you can stub the verification logic or seed a valid TOTP
using a known secret.

// tests/Feature/TwoFactorLoginTest.php
namespace Tests\Feature;

use Tests\TestCase;
use App\Models\User;
use Illuminate\Foundation\Testing\RefreshDatabase;

class TwoFactorLoginTest extends TestCase

{

use RefreshDatabase;

public function test user with 2fa is redirected to challenge():
void
{
$user = User::factory()->create([
// Pretend 2FA is enabled by seeding secret/recovery
fields:
'two factor secret' => encrypt('TESTSECRET'),
‘two_factor recovery codes' =>
encrypt(json encode(['recovery-code-1'])),
1);

// First step: password login (simulate posting valid
credentials)
$response = $this->post('/login', [
'email' => $user->email,

Laravel Starter Kits

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

1v02E

test)

location

}

‘password’ => 'password', // matches default factory
1);

$response->assertRedirect('/two-factor-challenge');
// Second step: submit a recovery code (bypassing TOTP for
$challenge = $this->post('/two-factor-challenge', [

‘recovery code' => 'recovery-code-1',
1);

$challenge->assertRedirect('/home'); // or your intended

$this->assertAuthenticatedAs($user);

}Code language: PHP (php)

The test verifies that a user with 2FA enabled is redirected to the challenge after password
login, and that providing a valid recovery code authenticates them fully.

Troubleshooting & Notes

* QR not showing? Ensure you've run the vendor publish & migrations, and that your
user has a generated secret after enabling 2FA. The twoFactorQrCodeSvg() helper
renders only when 2FA is enabled.

» Time drift errors? TOTP is time-based: make sure your server clock is accurate (use
NTP) so codes match authenticator apps.

» Lost device? Users can sign in with a recovery code and immediately regenerate new
recovery codes from the profile screen.

» Security hardening: Consider emailing users on 2FA changes (examples above) and
auditing those events.

These tips help ensure a smooth 2FA experience and keep your app’s authentication flow

Laravel Starter Kits

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

1v02E

secure and user-friendly.

Wrapping Up

With Laravel Fortify, adding 2FA is straightforward: enable the feature, provide minimal Ul
for enabling/disabling and challenges, and wire event listeners for better security hygiene.
The built-in helpers for QR codes and recovery codes make UX smooth, while middleware
like password.confirm protects sensitive operations. You now have a production-ready
baseline for strong, user-friendly 2FA in Laravel.

What’s Next

Keep strengthening your auth stack with these related guides:

e Implementing Two-Factor Authentication in Laravel

» How to Build Email Verification in Laravel 12 (Step by Step)

e Implementing Password Reset in Laravel 12 Without Packages

Laravel Starter Kits

https://1v0.net/blog/implementing-two-factor-authentication-in-laravel
https://1v0.net/blog/how-to-build-email-verification-in-laravel-12-step-by-step
https://1v0.net/blog/implementing-password-reset-in-laravel-12-without-packages
https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

