
Laravel Starter Kits

Laravel Fortify 2FA Example: Enable, Challenge,
Recovery Codes (Step by Step)
Laravel Fortify provides a headless authentication backend, including built-in Two-Factor
Authentication (2FA) with time-based one-time passwords (TOTP). In this guide, you’ll
install and configure Fortify, enable 2FA, build minimal Blade views for enabling/disabling
2FA, display QR codes and recovery codes, handle the two-factor challenge at login, wire
useful events, and test the flow end-to-end.

Install & Register Laravel Fortify
composer require laravel/fortifyCode language: Bash (bash)

This installs Fortify into your Laravel app. Fortify exposes authentication routes and actions
(login, logout, 2FA enable/disable, challenges) without generating UI scaffolding.

php artisan vendor:publish --
provider="Laravel\Fortify\FortifyServiceProvider"Code language: Bash (bash)

Publishing copies the Fortify configuration file, migrations, and language lines to your
project so you can customize them (including the 2FA-related columns).

// config/app.php (ensure provider is registered if not auto-
discovered)
'providers' => [
 // ...
 App\Providers\FortifyServiceProvider::class,
],Code language: PHP (php)

Fortify is typically registered via your own App\Providers\FortifyServiceProvider
so you can define views and behaviors. If you don’t have it, create and register it as above.

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

Laravel Starter Kits

php artisan migrateCode language: Bash (bash)

Run migrations to ensure 2FA columns exist on the users table. The published migration
adds two_factor_secret, two_factor_recovery_codes, and timestamps needed for
2FA.

Enable Two-Factor Authentication in Fortify
// config/fortify.php
use Laravel\Fortify\Features;

return [
 // ...
 'features' => [
 Features::registration(),
 Features::resetPasswords(),
 Features::emailVerification(),
 Features::twoFactorAuthentication([
 'confirmPassword' => true,
]),
],
];Code language: PHP (php)

Enabling Features::twoFactorAuthentication() activates Fortify’s 2FA endpoints:
enabling/disabling 2FA, generating recovery codes, and challenging users during login
when 2FA is active.

// app/Providers/FortifyServiceProvider.php
namespace App\Providers;

use Illuminate\Support\ServiceProvider;
use Laravel\Fortify\Fortify;

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

Laravel Starter Kits

class FortifyServiceProvider extends ServiceProvider
{
 public function boot(): void
 {
 // Point Fortify to your custom Blade views:
 Fortify::loginView(fn() => view('auth.login')); // your
existing login
 Fortify::twoFactorChallengeView(fn() => view('auth.two-factor-
challenge'));
 // You can set other views (register, reset, etc.) as needed.
 }
}Code language: PHP (php)

Fortify is “headless”, so you must provide the login and two-factor challenge views. We will
create a minimal set of views next.

Profile UI: Enable / Disable 2FA + Show QR & Recovery
Codes
Fortify exposes signed-in endpoints for enabling/disabling 2FA and regenerating recovery
codes. Here’s a simple Blade “Profile Security” section to manage 2FA on the frontend.

<!-- resources/views/profile/security.blade.php -->
@extends('layouts.app')

@section('content')
 <h2>Two-Factor Authentication</h2>

 @if (! auth()->user()->two_factor_secret)
 <form method="POST" action="/user/two-factor-authentication">
 @csrf
 <button type="submit">Enable 2FA</button>

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

Laravel Starter Kits

 </form>
 @else
 <p>2FA is enabled on your account.</p>

 <h3>Scan this QR code in your authenticator app</h3>
 {!! auth()->user()->twoFactorQrCodeSvg() !!}

 <h3 class="mt-3">Recovery Codes</h3>

 @foreach (auth()->user()->recoveryCodes() as $code)
 <code>{{ $code }}</code>
 @endforeach

 <form method="POST" action="/user/two-factor-recovery-codes">
 @csrf
 <button type="submit">Regenerate Recovery Codes</button>
 </form>

 <form method="POST" action="/user/two-factor-authentication">
 @csrf
 @method('DELETE')
 <button type="submit" class="mt-3">Disable 2FA</button>
 </form>
 @endif
@endsectionCode language: PHP (php)

When 2FA is disabled, the form posts to /user/two-factor-authentication to enable
it. Once enabled, users see a QR SVG (scan with Google Authenticator, 1Password, Authy,
etc.) and recovery codes. They can regenerate codes or disable 2FA via the provided forms.

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

Laravel Starter Kits

Two-Factor Challenge View (Login Step)
After a successful password login for a user with 2FA enabled, Fortify redirects to a
challenge page to enter the TOTP code or a recovery code. Create this Blade view and wire
it in your FortifyServiceProvider as shown earlier.

<!-- resources/views/auth/two-factor-challenge.blade.php -->
@extends('layouts.guest')

@section('content')
 <h1>Two-Factor Challenge</h1>

 <form method="POST" action="/two-factor-challenge">
 @csrf

 <div>
 <label>Authentication Code</label>
 <input type="text" name="code" inputmode="numeric"
autocomplete="one-time-code">
 </div>

 <p>Or use a recovery code:</p>

 <div>
 <label>Recovery Code</label>
 <input type="text" name="recovery_code">
 </div>

 <button type="submit">Verify</button>

 @error('code') <p class="text-danger">{{ $message }}</p> @enderror
 @error('recovery_code') <p class="text-danger">{{ $message }}</p>
@enderror
 </form>
@endsectionCode language: PHP (php)

Posting to /two-factor-challenge tells Fortify to validate either the 6-digit code from
the authenticator app or a recovery code, completing the login flow.

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

Laravel Starter Kits

Useful Events: Email Users When 2FA Changes
Fortify fires events when users enable/disable 2FA or regenerate recovery codes. You can
listen to these and notify users for security awareness.

// app/Providers/EventServiceProvider.php
protected $listen = [
 \Laravel\Fortify\Events\TwoFactorAuthenticationEnabled::class => [
 \App\Listeners\SendTwoFactorEnabledNotification::class,
],
 \Laravel\Fortify\Events\TwoFactorAuthenticationDisabled::class =>
[
 \App\Listeners\SendTwoFactorDisabledNotification::class,
],
 \Laravel\Fortify\Events\RecoveryCodesGenerated::class => [
\App\Listeners\SendRecoveryCodesRegeneratedNotification::class,
],
];Code language: PHP (php)

Registering listeners lets you send mail, Slack/Log notifications, or audit events whenever
2FA settings change.

// app/Listeners/SendTwoFactorEnabledNotification.php
namespace App\Listeners;

use Illuminate\Support\Facades\Mail;
use Laravel\Fortify\Events\TwoFactorAuthenticationEnabled;

class SendTwoFactorEnabledNotification
{
 public function handle(TwoFactorAuthenticationEnabled $event):
void
 {

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

Laravel Starter Kits

 $user = $event->user;
 Mail::raw('Two-Factor Authentication was enabled on your
account.', function ($m) use ($user) {
 $m->to($user->email)->subject('2FA Enabled');
 });
 }
}Code language: PHP (php)

This simple listener sends an email whenever a user enables 2FA. You can create similar
listeners for disabled and regenerated codes to keep users informed.

Controller Integration: Protect Critical Actions with
Password/2FA
Even with 2FA enabled, you might want to require recent password confirmation (and
therefore 2FA at login) before sensitive actions (like deleting an account). Fortify ships a
password confirmation route you can require via middleware.

// routes/web.php
Route::middleware(['auth', 'password.confirm'])->group(function () {
 Route::delete('/account',
[\App\Http\Controllers\AccountController::class, 'destroy'])
 ->name('account.destroy');
});Code language: PHP (php)

Using password.confirm ensures the user recently re-entered their password (and has
passed 2FA on login). You can also build a custom flow to ask for a fresh TOTP if you prefer
a second check before a destructive action.

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

Laravel Starter Kits

Feature Test: Happy Path for 2FA Challenge
This example shows how to simulate a user with 2FA enabled and verify that the two-factor
challenge gate works. In practice, you can stub the verification logic or seed a valid TOTP
using a known secret.

// tests/Feature/TwoFactorLoginTest.php
namespace Tests\Feature;

use Tests\TestCase;
use App\Models\User;
use Illuminate\Foundation\Testing\RefreshDatabase;

class TwoFactorLoginTest extends TestCase
{
 use RefreshDatabase;

 public function test_user_with_2fa_is_redirected_to_challenge():
void
 {
 $user = User::factory()->create([
 // Pretend 2FA is enabled by seeding secret/recovery
fields:
 'two_factor_secret' => encrypt('TESTSECRET'),
 'two_factor_recovery_codes' =>
encrypt(json_encode(['recovery-code-1'])),
]);

 // First step: password login (simulate posting valid
credentials)
 $response = $this->post('/login', [
 'email' => $user->email,

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

Laravel Starter Kits

 'password' => 'password', // matches default factory
]);

 $response->assertRedirect('/two-factor-challenge');

 // Second step: submit a recovery code (bypassing TOTP for
test)
 $challenge = $this->post('/two-factor-challenge', [
 'recovery_code' => 'recovery-code-1',
]);

 $challenge->assertRedirect('/home'); // or your intended
location
 $this->assertAuthenticatedAs($user);
 }
}Code language: PHP (php)

The test verifies that a user with 2FA enabled is redirected to the challenge after password
login, and that providing a valid recovery code authenticates them fully.

Troubleshooting & Notes
QR not showing? Ensure you’ve run the vendor publish & migrations, and that your
user has a generated secret after enabling 2FA. The twoFactorQrCodeSvg() helper
renders only when 2FA is enabled.
Time drift errors? TOTP is time-based: make sure your server clock is accurate (use
NTP) so codes match authenticator apps.
Lost device? Users can sign in with a recovery code and immediately regenerate new
recovery codes from the profile screen.
Security hardening: Consider emailing users on 2FA changes (examples above) and
auditing those events.

These tips help ensure a smooth 2FA experience and keep your app’s authentication flow

https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

Laravel Starter Kits

secure and user-friendly.

Wrapping Up
With Laravel Fortify, adding 2FA is straightforward: enable the feature, provide minimal UI
for enabling/disabling and challenges, and wire event listeners for better security hygiene.
The built-in helpers for QR codes and recovery codes make UX smooth, while middleware
like password.confirm protects sensitive operations. You now have a production-ready
baseline for strong, user-friendly 2FA in Laravel.

What’s Next
Keep strengthening your auth stack with these related guides:

Implementing Two-Factor Authentication in Laravel
How to Build Email Verification in Laravel 12 (Step by Step)
Implementing Password Reset in Laravel 12 Without Packages

https://1v0.net/blog/implementing-two-factor-authentication-in-laravel
https://1v0.net/blog/how-to-build-email-verification-in-laravel-12-step-by-step
https://1v0.net/blog/implementing-password-reset-in-laravel-12-without-packages
https://1v0.net/blog/laravel-fortify-2fa-example-enable-challenge-recovery-codes-step-by-step/
https://1v0.net

