1v02E

Laravel Fortify: The Authentication Backend Starter Kit

I had to implement Laravel Fortify in a project and the front-end team insisted on
designing the entire Ul themselves with Vue, so I couldn’t rely on Breeze or Jetstream,
which already come with their own scaffolding. At first, I wasn’t sure how Fortify would fit,
because unlike other starter Kkits, it doesn’t give you ready-made views or layouts. But once I
dug into it, I realized that was actually a huge advantage. I could enable all the
authentication features we needed (registration, password reset, email verification, and
even two-factor authentication) while letting the front-end developers craft the Ul however
they wanted.

It was flexible, backend-focused, and kept the project clean. Later, when we switched to a
SPA setup with Sanctum, Fortify continued to power the backend without any issues. That
experience convinced me that Fortify is the best option whenever you want complete
freedom in building your application’s interface, without sacrificing Laravel’s authentication
power. Since then, I've used it for mobile apps, Vue SPAs, and projects where design
freedom was critical.

Laravel Fortify is a backend authentication implementation for Laravel applications. Unlike
Breeze or Jetstream, it doesn’t provide front-end scaffolding. Instead, it registers routes and
controllers for login, registration, password reset, email verification, and two-factor
authentication. This makes it perfect for developers who want full control over the user
interface while leveraging Laravel’s secure backend authentication system.

Laravel Starter Kits

https://1v0.net/blog/laravel-fortify-the-authentication-backend-starter-kit/
https://1v0.net/blog/laravel-fortify-the-authentication-backend-starter-kit/
https://1v0.net

1v02E

Installing Laravel Fortify

composer require laravel/fortify

php artisan vendor:publish --
provider="Laravel\Fortify\FortifyServiceProvider"
php artisan migrateCode language: JavaScript (javascript)

This installs Fortify, publishes its configuration file, and runs database migrations needed
for user authentication and password resets.

Enabling Features

// config/fortify.php

'features' => |
Features::registration(),
Features::resetPasswords(),
Features::emailVerification(),
Features::updateProfileInformation(),
Features: :updatePasswords(),
Features::twoFactorAuthentication(),

], Code language: PHP (php)

In config/fortify.php you can enable or disable features depending on your project.
For example, you might disable registration if you want an invite-only system.

Laravel Starter Kits

https://1v0.net/blog/laravel-fortify-the-authentication-backend-starter-kit/
https://1v0.net

1v02E

Customizing Views

// app/Providers/FortifyServiceProvider.php
use Laravel\Fortify\Fortify;

public function boot()

{
Fortify::loginView(fn () => view('auth.login'));
Fortify::registerView(fn () => view('auth.register'));
}Code language: PHP (php)

Here you connect Fortify’s backend routes to your own Blade templates. That way you can
design the login and registration forms exactly as you want.

Blade Example for Login

<!-- resources/views/auth/login.blade.php -->

<form method="POST" action="{{ route('login') }}">
@csrf
<label>Email</label>
<input type="email" name="email" required autofocus />

<label>Password</label>
<input type="password" name="password" required />

<button type="submit">Login</button>
</form>Code language: HTML, XML (xml)

This Blade form connects directly to Fortify’s Login route. No controller or route setup is
required — Fortify handles the backend logic.

Laravel Starter Kits

https://1v0.net/blog/laravel-fortify-the-authentication-backend-starter-kit/
https://1v0.net

1v02E

Vue SPA Login with Fortify + Sanctum

// resources/js/components/Login.vue

<template>
<form @submit.prevent="login">
<input v-model="form.email" type="email" placeholder="Email"
required />
<input v-model="form.password" type="password"
placeholder="Password" required />
<button type="submit">Login</button>
</form>
</template>

<script setup>
import { reactive } from 'vue'
import axios from 'axios'

const form = reactive({
email: '"',
password:

})

const login = async () => {
await axios.get('/sanctum/csrf-cookie')
await axios.post('/login', form)
window.location.href = '/dashboard'

}

</script>Code language: HTML, XML (xml)

This Vue component integrates directly with Fortify’s /1login endpoint. Sanctum manages
the CSRF protection and session, so the SPA can authenticate users securely.

Laravel Starter Kits

https://1v0.net/blog/laravel-fortify-the-authentication-backend-starter-kit/
https://1v0.net

1v02E

Tips and Tricks

» Use auth and verified middleware to secure sensitive routes.
 Override default controllers if you want custom redirects after login.
» Enable twoFactorAuthentication() for additional security.

e Combine Fortify with Sanctum when building SPAs or mobile APIs.

Comparison: Fortify vs Breeze vs Jetstream

Feature Fortify Breeze
Purvose Backend-only Minimal auth starter
P authentication kit with Blade views
Front-end None, fully custom Blade‘+ Ta1.1w1nd
(Inertia optional)
Teams No No
2FA Yes No

SPAs, mobile apps, MVPs, small to

Best Use Case custom Uls medium apps

See comparison of Laravel Starter Kits

Jetstream

Advanced starter kit with
teams and APIs

Livewire + Blade or
Inertia + Vue/React

Yes
Yes

SaaS and team-based
apps

Laravel Fortify gives you all the backend power of authentication without dictating how

Laravel Starter Kits

https://1v0.net/blog/best-laravel-starter-kits-breeze-jetstream-spark-nova-22-more/
https://1v0.net/blog/laravel-fortify-the-authentication-backend-starter-kit/
https://1v0.net

1v02E

the front end should look. Whether you're building a Blade-based UI, a Vue SPA, or even a
mobile app, Fortify keeps the authentication logic consistent and secure while giving you

total design freedom. If flexibility and control are priorities in your project, Fortify is the
starter kit to choose.

Laravel Starter Kits

https://1v0.net/blog/laravel-fortify-the-authentication-backend-starter-kit/
https://1v0.net

