1v02E

Laravel Horizon vs Queue Workers: Which One Should
You Use?

Laravel Horizon vs Queue Workers: Which One Should
You Use?

Laravel gives you two main ways to process background jobs: the classic queue:work
workers and the Horizon dashboard/manager for Redis queues. Both run the same jobs and
use the same queue system—but they differ in operability, visibility, and auto-scaling
features. In this guide, you’ll learn their trade-offs, when to pick one over the other, how to
configure each in production, and how to migrate smoothly between them.

1 - The Short Answer

» Use queue:work if you want maximum simplicity, minimal dependencies, or you're
not on Redis yet.

» Use Horizon if you're on Redis and need auto-balancing, per-queue scaling, live
metrics, failure insights, and an operations-friendly dashboard.

If your app is growing or is already in production with meaningful throughput, Horizon
usually pays for itself in visibility and control. For the fundamentals of queues, read Article
#42 - Queues. For the Horizon dashboard and features, see Article #45 - Horizon.

Laravel Starter Kits

https://1v0.net/blog/laravel-horizon-vs-queue-workers-which-one-should-you-use/
https://1v0.net/blog/laravel-horizon-vs-queue-workers-which-one-should-you-use/
https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance
https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance
https://1v0.net/blog/how-to-use-laravel-horizon-for-queue-monitoring
https://1v0.net/blog/laravel-horizon-vs-queue-workers-which-one-should-you-use/
https://1v0.net

1v02E

2 - Classic Workers with queue:work

Classic workers are just long-running PHP processes that pull jobs from your configured
backend (database, Redis, SQS, etc.). They're easy to run and script with systemd or
Supervisor.

Run a worker on the default connection
php artisan queue:work --queue=default --sleep=1 --tries=3

Run multiple workers for throughput

php artisan queue:work --queue=emails --sleep=1 --tries=3

php artisan queue:work --queue=reports --sleep=1 --tries=3Code language:
Bash (bash)

The command pulls jobs from the specified queue list and processes them. Flags like - -
s Leep control polling behavior; - -tries sets the automatic retry count before failure.

; /etc/systemd/system/laravel-queue@.service
[Unit]

Description=Laravel Queue Worker for %i
After=network.target

[Service]

User=www-data

Restart=always

RestartSec=3

WorkingDirectory=/var/www/current

ExecStart=/usr/bin/php artisan queue:work --queue=%i --sleep=1 --
tries=3

ExecStop=/bin/kill -s SIGTERM $MAINPID

[Install]
WantedBy=multi-user.targetCode language: TOML, also INI (ini)

This systemd template lets you run one service per queue (e.g., Laravel-queue@emails,
laravel -queue@reports). It automatically restarts workers, making basic operations
simple without a dashboard.

Laravel Starter Kits

https://1v0.net/blog/laravel-horizon-vs-queue-workers-which-one-should-you-use/
https://1v0.net

1v02E

3 - Horizon: Managed, Observable Redis Workers

Horizon is a layer on top of Redis queues that adds a web UlI, auto-balancing, per-queue
processes, tags, batches, and real-time metrics.

composer require laravel/horizon

php artisan horizon:install

php artisan migrate

php artisan horizonCode language: Bash (bash)

Installing Horizon publishes config and migrations for job monitoring. Running php
artisan horizon starts the Horizon master, workers, and a dashboard available at
/horizon. See our full walkthrough in Article #45.

// config/horizon.php (snippet)
‘supervisors' => [
'app-supervisor' => [
'connection' => 'redis',
‘queue’ => ['default', 'emails', 'reports'],
'balance' => 'auto',
'minProcesses' => 2,
‘maxProcesses' => 12,
'tries' => 3,
1,
], Code language: PHP (php)

Supervisors define how many worker processes run per queue group. With balance:
auto, Horizon dynamically shifts processes to hot queues, improving throughput during
spikes.

; /etc/systemd/system/horizon.service
[Unit]
Description=Laravel Horizon

Laravel Starter Kits

https://1v0.net/blog/how-to-use-laravel-horizon-for-queue-monitoring
https://1v0.net/blog/laravel-horizon-vs-queue-workers-which-one-should-you-use/
https://1v0.net

1v02E

After=network.target

[Service]

User=www-data
WorkingDirectory=/var/www/current
ExecStart=/usr/bin/php artisan horizon
Restart=always

RestartSec=3

[Install]
WantedBy=multi-user.targetCode language: TOML, also INI (ini)

Running Horizon under systemd makes it resilient across deploys and reboots. It will
automatically reload workers when your code changes, reducing manual restarts compared
to classic workers.

4 - Side-by-Side Comparison

» Backends: queue:work supports Database/Redis/SQS/etc. Horizon focuses on Redis.

« Visibility: Classic workers = logs only. Horizon = live dashboard (throughput, latency,
failures, retries, tags, batches).

» Scaling: Classic = manual process counts. Horizon = per-queue supervisors,
min/maxProcesses, auto-balancing.

» Ops: Classic = simplest, fewer moving parts. Horizon = more features, easier on-call
debugging.

» Cost: Horizon adds Redis dependency & instance size considerations, but saves ops
time under load.

» Security: Protect /horizon via auth/gates; in classic mode there’s no dashboard to
secure.

For high-traffic environments, the observability and auto-scaling that Horizon brings
typically outweigh the extra moving parts. Pair Horizon with Redis and caching strategies
from Article #43 for best results.

Laravel Starter Kits

https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file
https://1v0.net/blog/laravel-horizon-vs-queue-workers-which-one-should-you-use/
https://1v0.net

1v02E

5 - Job Tagging & Batches (Horizon Extras)

Horizon can group and filter jobs by tags and show batch progress. Tagging makes
debugging easier during incidents.

// app/Jobs/SendWelcomeEmail.php (snippet)
public function tags(): array
{

return ['user:'.$this->user->id, 'emails'];
}Code language: PHP (php)

These tags let you filter the Horizon dashboard to see only jobs for a specific user or
category—handy for troubleshooting failures and replays.

// Dispatch a batch with progress tracking
use Illuminate\Bus\Batch;
use Illuminate\Support\Facades\Bus;

$batch = Bus::batch([
new ImportRow($file, 1),
new ImportRow($file, 2),
/] ...
1) ->then(fn (Batch $batch) => logger('Import complete'))
->catch(fn (Batch $batch, Throwable $e) => logger('Import failed'))
->name('Customer Import')
->dispatch();Code language: PHP (php)

Batches group multiple jobs and show progress/failures in Horizon. This is invaluable for
long-running imports where you need visibility and retry control at scale.

Laravel Starter Kits

https://1v0.net/blog/laravel-horizon-vs-queue-workers-which-one-should-you-use/
https://1v0.net

1v02E

6 - A Tiny Admin UI Toggle (Optional)

Here’s a minimal Blade Ul to simulate switching strategies (note: in reality you enable one
or the other at deploy time). It’s useful for documenting your operations runbook.

<!-- resources/views/admin/queues.blade.php -->
@extends('layouts.app')

@section('content')
<div class="container">
<hl class="mb-4">Queue Strategy</hl>

<div class="card mb-3">
<div class="card-body">
<p class="mb-3">Current: Horizon (Redis)</p>
0pen Horizon
Dashboard
<a href="{{ route('admin.docs.queue') }}" class="btn btn-
outline-secondary ms-2">0perations Runbook
</div>
</div>

<p class="text-muted">Switching between Horizon and classic workers
is usually done during deployment with systemd services.</p>
</div>
@endsectionCode language: HTML, XML (xml)

This page links operators to Horizon and your internal docs. Treat “switching” as a
deployment concern (start/stop services), not a runtime toggle.

Laravel Starter Kits

https://1v0.net/blog/laravel-horizon-vs-queue-workers-which-one-should-you-use/
https://1v0.net

1v02E

7 - Deployment & Reliability Notes

» Supervise processes: Use systemd/Supervisor for both Horizon and classic workers
so they auto-restart.

» Environment parity: Keep dev/staging using the same backend (Redis) to catch
scaling issues early.

» Back-pressure: Use queue priorities (multiple queues) and Horizon supervisors to
keep critical jobs flowing.

* Observability: Pair Horizon with Telescope for request/query insights; they
complement each other.

» High concurrency: If request throughput is also high, consider Octane for the web
tier and Horizon for workers.

For production checklists and CI, see Article #58 - Deployment Checklist and Article #54 -
CI/CD.

8 - Migrating from Classic Workers to Horizon

» Ensure QUEUE CONNECTION=redis and Redis is sized properly.

» Install/configure Horizon supervisors with sane min/maxProcesses.

» Roll a canary: point a subset of queues to Horizon, watch metrics, then cut over fully.
» Tag key jobs and use batches where visibility helps during the transition.

» Decommission old queue:work services after verifying parity.

This staged approach reduces risk while giving you immediate operational
benefits—especially the dashboard and auto-balancing during traffic spikes.

Laravel Starter Kits

https://1v0.net/blog/using-laravel-telescope-to-debug-performance-issues
https://1v0.net/blog/optimizing-laravel-for-high-concurrency-with-octane
https://1v0.net/blog/laravel-deployment-checklist-for-2025
https://1v0.net/blog/cicd-for-laravel-projects-with-github-actions
https://1v0.net/blog/cicd-for-laravel-projects-with-github-actions
https://1v0.net/blog/laravel-horizon-vs-queue-workers-which-one-should-you-use/
https://1v0.net

1v02E

Wrapping Up

Classic workers are simple and effective for small to medium workloads or non-Redis
backends. Horizon shines when you need operational visibility, auto-balancing,
tags/batches, and a production-grade dashboard—all on Redis. Many teams start with
classic workers and graduate to Horizon as load and complexity grow. Choose based on
your current scale, team needs, and infrastructure.

What'’s Next

e How to Use Laravel Queues for Faster Performance — foundations, retries, chaining,
and delays.

» How to Use Laravel Horizon for Queue Monitoring — supervisors, balancing, alerts,
and dashboard.

» 10 Proven Ways to Optimize Laravel for High Traffic — pair queues with caching,
indexing, and Octane.

Laravel Starter Kits

https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance
https://1v0.net/blog/how-to-use-laravel-horizon-for-queue-monitoring
https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic
https://1v0.net/blog/laravel-horizon-vs-queue-workers-which-one-should-you-use/
https://1v0.net

