
Laravel Starter Kits

Laravel Middleware for Role-Based Route Protection

In every web application, certain routes should only be accessible by specific users. For
example, an admin dashboard should be restricted to admins, while editors may only
manage content. In Laravel 12, this is best achieved using middleware — small classes
that filter requests before they reach controllers.

In this guide, you’ll learn how to use middleware to protect routes by role and
permission. We’ll cover Spatie’s built-in middleware, how to create your own custom
middleware, and how to apply them effectively in your application.

1 – Why Middleware for Roles?
Middleware acts like a security checkpoint. When a request enters your app, middleware
decides if it should continue. With role-based middleware, you can make sure that only
users with the right roles/permissions can access sensitive pages.

2 – Spatie’s Role & Permission Middleware
When you install Spatie Permissions, it registers two middleware out of the box:

role:<role> — restricts access to a role
permission:<permission> — restricts access to a permission

Example usage:

https://1v0.net/blog/laravel-middleware-for-role-based-route-protection/
https://1v0.net/blog/laravel-spatie-permissions-step-by-step-installation-setup
https://1v0.net/blog/laravel-middleware-for-role-based-route-protection/
https://1v0.net

Laravel Starter Kits

// routes/web.php

Route::middleware(['auth','role:admin'])->group(function () {
 Route::get('/admin/dashboard', function () {
 return 'Welcome Admin';
 });
});

Route::middleware(['auth','permission:publish posts'])->group(function
() {
 Route::get('/editor/posts', function () {
 return 'Editor Post Management';
 });
});Code language: PHP (php)

Now only admins can access /admin/dashboard, and only users with the publish posts
permission can access /editor/posts.

3 – Multiple Roles & Permissions
You can also allow multiple roles or permissions in a single middleware declaration by
separating them with a pipe (|):

// routes/web.php

Route::middleware(['auth','role:admin|manager'])->group(function () {
 Route::get('/reports', function () {
 return 'Reports Page';
 });
});Code language: PHP (php)

In this example, both admin and manager roles can access the /reports route.

https://1v0.net/blog/laravel-middleware-for-role-based-route-protection/
https://1v0.net

Laravel Starter Kits

4 – Creating Custom Middleware
Sometimes, Spatie’s built-in middleware isn’t enough. For example, maybe you want to
restrict access based on both a role and a specific condition. In that case, you can create
your own middleware.

php artisan make:middleware CheckEditorApprovalCode language: CSS (css)

// app/Http/Middleware/CheckEditorApproval.php
namespace App\Http\Middleware;

use Closure;
use Illuminate\Http\Request;

class CheckEditorApproval
{
 public function handle(Request $request, Closure $next)
 {
 if (! $request->user()->hasRole('editor') || !
$request->user()->approved) {
 abort(403, 'Access denied.');
 }

 return $next($request);
 }
}Code language: PHP (php)

Register your middleware in app/Http/Kernel.php under $routeMiddleware and apply
it like this:

Route::middleware(['auth','check.editor'])->group(function () {
 Route::get('/editor/dashboard', function () {
 return 'Editor Dashboard';

https://1v0.net/blog/laravel-middleware-for-role-based-route-protection/
https://1v0.net

Laravel Starter Kits

 });
});Code language: PHP (php)

This ensures that only approved editors can access the dashboard.

5 – Applying Middleware in Controllers
You don’t have to declare middleware only in routes. You can also apply them directly inside
controllers:

// app/Http/Controllers/Admin/DashboardController.php

class DashboardController extends Controller
{
 public function __construct()
 {
 $this->middleware(['auth','role:admin']);
 }

 public function index()
 {
 return view('admin.dashboard');
 }
}Code language: PHP (php)

This way, any route pointing to DashboardController will automatically be protected by
the admin role requirement.

https://1v0.net/blog/laravel-middleware-for-role-based-route-protection/
https://1v0.net

Laravel Starter Kits

6 – Using HasMiddleware in Laravel 12
Laravel 12 introduces a modern way to assign middleware directly in controllers using the
HasMiddleware interface and a static middleware() method. This is cleaner than the old
$this->middleware() approach and doesn’t require constructors.

⚠️ Important: In older Laravel versions, your base controller extended
Illuminate\Routing\Controller (aliased as BaseController). That class contains an
instance middleware() method, which conflicts with the new static middleware()
method. In Laravel 12, controllers no longer need to extend
Illuminate\Routing\Controller. You should update your
App\Http\Controllers\Controller to remove the inheritance.

// Before (default older style)
use Illuminate\Routing\Controller as BaseController;

class Controller extends BaseController
{
 use AuthorizesRequests, ValidatesRequests;
}

// After (Laravel 12 style — no BaseController needed)
class Controller
{
 use AuthorizesRequests, ValidatesRequests;
}Code language: PHP (php)

Now, you can safely implement HasMiddleware in your controllers without conflicts:

// app/Http/Controllers/Admin/DashboardController.php

namespace App\Http\Controllers\Admin;

use App\Http\Controllers\Controller;
use Illuminate\Routing\Controllers\HasMiddleware;
use Illuminate\Routing\Controllers\Middleware;

class DashboardController extends Controller implements HasMiddleware

https://1v0.net/blog/laravel-middleware-for-role-based-route-protection/
https://1v0.net

Laravel Starter Kits

{
 public static function middleware(): array
 {
 return [
 new Middleware('auth'),
 new Middleware('role:admin'),
];
 }

 public function index()
 {
 return view('admin.dashboard');
 }
}Code language: PHP (php)

With this setup, all actions in the DashboardController are automatically protected by
the auth and role:admin middleware. You can also restrict specific actions using only or
except options.

Wrapping Up
Middleware is the most effective way to enforce role-based security in Laravel 12. With
Spatie’s built-in middleware, you can restrict routes by role or permission in seconds. For
advanced scenarios, you can write custom middleware to check additional conditions. By
combining these approaches, you can secure every part of your app’s routes with precision.

https://1v0.net/blog/laravel-middleware-for-role-based-route-protection/
https://1v0.net

Laravel Starter Kits

What’s Next
Building a Role-Based Admin Panel in Laravel 12 — complete role & permission
management.
Creating a Role-Specific Dashboard in Laravel 12 — tailor dashboards by role.
How to Create a Multi-Level Role & Permission System in Laravel — learn advanced
role hierarchies.

https://1v0.net/blog/building-a-role-based-admin-panel-in-laravel-12
https://1v0.net/blog/creating-a-role-specific-dashboard-in-laravel-12
https://1v0.net/blog/how-to-create-a-multi-level-role-and-permission-system-in-laravel
https://1v0.net/blog/laravel-middleware-for-role-based-route-protection/
https://1v0.net

