1v02E

Laravel Roles vs Policies: Which One Should You Use?

When building secure applications in Laravel 12, you'll quickly run into a question: should I
use roles or policies for access control? Both systems are valid and often used together,
but they solve different problems. Understanding their differences helps you pick the right
tool for each use case.

In this guide, we’ll explore what roles are, what policies are, show code examples for both,
and discuss when to use one over the other. We’'ll also look at combining them for maximum
flexibility, plus how roles can be managed via a Ul while policies stay inside code.

1 - What Are Roles?

Roles are labels that group permissions together. For example: admin, editor, and user.
Roles are stored in the database and can be assigned dynamically to users, usually using the
Spatie Permissions package.

// Assign a role
$user->assignRole('admin');

// Check role

if ($user->hasRole('editor')) {
// allow editing

}Code language: PHP (php)

Roles are easy to manage via a Ul — admins can assign or revoke them from users without
touching code.

Laravel Starter Kits

https://1v0.net/blog/laravel-roles-vs-policies-which-one-should-you-use/
https://1v0.net/blog/laravel-spatie-permissions-step-by-step-installation-setup
https://1v0.net/blog/laravel-roles-vs-policies-which-one-should-you-use/
https://1v0.net

1v02E

2 - What Are Policies?

Policies are classes in Laravel that contain authorization logic for specific models. For
example, an ArticlePolicy might define whether a user can view, update, or delete a
particular article. Unlike roles, policies live in code and can include complex, context-aware
logic.

// app/Policies/ArticlePolicy.php
namespace App\Policies;

use App\Models\User;
use App\Models\Article;

class ArticlePolicy

{

public function update(User $user, Article $article)

{

return $user->id === $article->author id;

}

public function delete(User $user, Article $article)

{

return $user->hasRole('admin');

}

}Code language: PHP (php)

Policies are registered in AuthServiceProvider and are checked using
$this->authorize() or @can in Blade templates.

@can('update', $article)

id }}/edit">Edit
@endcanCode language: HTML, XML (xml)

Laravel Starter Kits

https://1v0.net/blog/laravel-roles-vs-policies-which-one-should-you-use/
https://1v0.net

1v02E

Policies allow fine-grained, per-resource control — something roles alone cannot provide.

3 - Roles vs Policies: The Key Differences

* Roles = Who you are. Example: Admin, Editor, User.

 Policies = What you can do in context. Example: “Can this user edit this article?”
* Roles are dynamic and often managed from a UlI.

» Policies are static and live in your codebase.

» Roles work best for global access rules.

* Policies work best for model-level or record-level rules.

4 - Combining Roles & Policies

In practice, many apps use both roles and policies. For example:

// ArticlePolicy
public function delete(User $user, Article $article)
{

return $user->hasRole('admin') || $user->id ===
$article->author id;
}Code language: PHP (php)

Here, admins can delete any article, while regular users can only delete their own. Roles
handle the global rule, while the policy adds the per-resource logic.

Laravel Starter Kits

https://1v0.net/blog/laravel-roles-vs-policies-which-one-should-you-use/
https://1v0.net

1v02E

5 - Ul for Roles, Code for Policies

Roles are perfect for an admin panel Ul, where non-developers can manage who has
access to what features. Policies, on the other hand, are developer territory — they should
be written in code because they often require logic that depends on models and business
rules.

Example flow:

e Admins log in and assign roles to users through a Ul (no code changes).
» Policies in code use those roles (and additional checks) to enforce security at the
model level.

Wrapping Up
Roles and policies are not competitors — they complement each other. Use roles to manage

global permissions through a Ul, and use policies for fine-grained, model-specific rules.
Together, they give you a secure and flexible authorization system in Laravel 12.

Laravel Starter Kits

https://1v0.net/blog/laravel-roles-vs-policies-which-one-should-you-use/
https://1v0.net

1v0zs

What'’s Next

» Laravel Middleware for Role-Based Route Protection — secure routes with role checks.

e How to Create a Multi-Level Role & Permission System in Laravel — go beyond simple
roles.

» Creating a Role-Specific Dashboard in Laravel 12 — customize dashboards for each
role.

Laravel Starter Kits

https://1v0.net/blog/laravel-middleware-for-role-based-route-protection
https://1v0.net/blog/how-to-create-a-multi-level-role-permission-system-in-laravel
https://1v0.net/blog/creating-a-role-specific-dashboard-in-laravel-12
https://1v0.net/blog/laravel-roles-vs-policies-which-one-should-you-use/
https://1v0.net

