1v02E

Laravel with Docker & Sail: The Right Way

Laravel with Docker & Sail: The Right Way

Laravel Sail is the official Docker development environment for Laravel. It gives you a
ready-to-use Docker Compose setup with PHP, MySQL/Postgres, Redis, Mailhog, and more.
In this article, we’ll walk step-by-step through setting up Sail, customizing services, adding
extensions, debugging containers, and preparing for production. This is the “right way” to
embrace Docker without losing Laravel’s simplicity.

1 — Install Sail

Laravel Sail ships with new projects, but you can add it to any Laravel 12 app. Require it via
Composer, then publish the docker-compose.yml file.

in your Laravel app root
composer require laravel/sail --dev
php artisan sail:install

start Sail with Docker Compose
./vendor/bin/sail up -dCode language: Bash (bash)

sail:install lets you choose services (MySQL, Redis, Meilisearch, Mailhog, Selenium).
The generated docker-compose.yml defines containers. Running sail up -d launches
them in the background.

Laravel Starter Kits

https://1v0.net/blog/laravel-with-docker-sail-the-right-way/
https://1v0.net/blog/laravel-with-docker-sail-the-right-way/
https://1v0.net

1v02E

2 — docker-compose.yml Overview

The default file defines services like laravel.test, mysql, redis, mailhog. You can
customize it (ports, volumes, versions).

version: '3'
services:
laravel. test:
build:
context: ./vendor/laravel/sail/runtimes/8.3
ports:
- '"${APP _PORT:-80}:80"
volumes:
- '".i/var/www/html'
environment:
WWWGROUP: '${WWWGROUP}'
depends_on:
- mysql
- redis
- mailhog

mysql:

image: 'mysql:8.0°

environment:
MYSQL DATABASE: '${DB DATABASE}'
MYSQL USER: '${DB USERNAME}'
MYSQL PASSWORD: '${DB PASSWORD}'
MYSQL ROOT PASSWORD: '${DB PASSWORD}'

ports:
- '3306:3306"

redis:
image: 'redis:alpine’
ports:
- '6379:6379'

mailhog:
image: 'mailhog/mailhog:latest’

Laravel Starter Kits

https://1v0.net/blog/laravel-with-docker-sail-the-right-way/
https://1v0.net

1v02E

ports:
- '8025:8025'Code language: YAML (yaml)

This setup runs Laravel in laravel.test container, with MySQL, Redis, and Mailhog.
Ports are mapped to your host for development: http://localhost for app, 8025 for
Mailhog UL

3 — Customizing PHP & Extensions

You can add PHP extensions by editing the Sail runtime Dockerfile. Example: enabling
imagick.

vendor/laravel/sail/runtimes/8.3/Dockerfile
FROM laravelsail/php83-composer

Install Imagick
RUN apt-get update && apt-get install -y libmagickwand-dev --no-
install-recommends \

&& pecl install imagick \

&& docker-php-ext-enable imagickCode language: Dockerfile (dockerfile)

Rebuild Sail after editing:
./vendor/bin/sail build --no-cacheCode language: Bash (bash)

This ensures your PHP container now has Imagick. You can repeat the same process for
other system libs or extensions.

Laravel Starter Kits

https://1v0.net/blog/laravel-with-docker-sail-the-right-way/
https://1v0.net

1v02E

4 — Running Artisan, Composer, and NPM

Sail wraps Docker Compose commands. Instead of php artisan, prefix with sail. Same
for Composer, NPM, PHPUnit.

Artisan
./vendor/bin/sail artisan migrate

Composer
./vendor/bin/sail composer require spatie/laravel-permission

NPM
./vendor/bin/sail npm run dev

Testing
./vendor/bin/sail testCode language: Bash (bash)

This ensures all commands run inside the PHP container, not on your host machine, so
versions are consistent across the team.

5 — Debugging Containers

You can “exec” into running containers or check logs directly.

enter PHP container shell
./vendor/bin/sail shell

check logs for app container
./vendor/bin/sail logs -f laravel.testCode language: Bash (bash)

sail shell drops you into a bash session inside the PHP container, where you can run
artisan tinker or inspect files. sail logs -f streams container logs (good for debugging
queues Or errors).

Laravel Starter Kits

https://1v0.net/blog/laravel-with-docker-sail-the-right-way/
https://1v0.net

1v02E

6 — Preparing Sail for Production

Sail is intended for development, but its Docker Compose setup can inspire production
images. For production:

 Build a lean PHP-FPM image with composer install --no-dev & cached
config/routes/views.

» Use Nginx as a separate container, not inside laravel.test.

» Use AWS RDS/DO Managed DB instead of container DB.

» Use Redis container or managed ElastiCache/DO Redis for queues (see #42 Queues).

» Run Horizon in its own service (see #45 Horizon).

For scaling beyond a single host, migrate to Kubernetes or ECS Fargate. See #52 AWS
Guide for container deployments.

7 — Developer UI: Sail Status Page

For teams new to Docker, a tiny Ul can display which services are running inside Sail. This
helps onboarding without needing to know Docker commands.

// routes/web.php
Route::get('/sail-status', function () {
$services = |
'‘MySQL' => env('DB HOST').':'.env('DB PORT"),
'Redis' => env('REDIS HOST').':'.env('REDIS PORT'),
'‘Mailhog' => 'http://localhost:8025"
1;

Laravel Starter Kits

https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance
https://1v0.net/blog/how-to-use-laravel-horizon-for-queue-monitoring
https://1v0.net/blog/deploying-laravel-on-aws-complete-guide-2025
https://1v0.net/blog/deploying-laravel-on-aws-complete-guide-2025
https://1v0.net/blog/laravel-with-docker-sail-the-right-way/
https://1v0.net

1v02E

return view('sail.status', compact('services'));
}) ; Code language: PHP (php)

This route builds a simple array of services (DB, Redis, Mailhog) from your .env and passes
it to a Blade view.

<!-- resources/views/sail/status.blade.php -->
@extends('layouts.app')
@section('content')
<div class="container">
<hl class="mb-4">Sail Services</hl>
<ul class="list-group">
@foreach($services as $name => $url)
<li class="list-group-item">
{{ $name }}: <a href="{{ $url }}"
target=" blank">{{ $url }}
</1li>
@endforeach

</div>
@endsectionCode language: HTML, XML (xml)

The UI helps developers verify connections quickly. For real monitoring in production, use
Horizon (#45) and Telescope (#48).

Wrapping Up

Laravel Sail is the fastest way to onboard developers with Docker: one command launches a
full stack (PHP, DB, Redis, Mailhog). By customizing Dockerfiles, adding extensions, and
using the Sail CLI, your team enjoys consistent environments without local setup headaches.
For production, evolve the setup into lean images with proper Nginx, managed DB/Redis,
Horizon for queues, and CI/CD pipelines. This hybrid approach keeps development simple
but sets you up for scalable deployments.

Laravel Starter Kits

https://1v0.net/blog/laravel-with-docker-sail-the-right-way/
https://1v0.net

1v02E

What'’s Next

» Laravel and Docker: Setting Up a Scalable Dev Environment — dive deeper into
Docker for both dev & production (Article #46).

» CI/CD for Laravel Projects with GitHub Actions — automate build & deploy pipelines
(Article #54).

» Deploying Laravel on AWS: Complete Guide (2025) — containerize and run your app
on ECS or EC2 (Article #52).

Laravel Starter Kits

https://1v0.net/blog/laravel-and-docker-setting-up-a-scalable-dev-environment
https://1v0.net/blog/cicd-for-laravel-projects-with-github-actions
https://1v0.net/blog/deploying-laravel-on-aws-complete-guide-2025
https://1v0.net/blog/laravel-with-docker-sail-the-right-way/
https://1v0.net

