
Laravel Starter Kits

Mastering Validation Rules in Laravel 12

Validation is one of the most important parts of any Laravel application. It ensures that the
data coming from forms, APIs, or user input is safe, correct, and ready to be stored in the
database. Without validation, users could submit broken data, leave required fields empty,
or even try to exploit your app with malicious input.

In this guide, we’ll go deep into mastering validation rules in Laravel 12. We’ll look at basic
validation, custom error messages, form request classes, and some of the most useful built-
in rules. Each example is explained in detail so new developers can follow along easily.

1 – Basic Validation with the validate() Method

// app/Http/Controllers/UserController.php

public function store(Request $request)
{
 $validated = $request->validate([
 'name' => 'required|string|max:255',
 'email' => 'required|email|unique:users,email',
 'age' => 'nullable|integer|min:18',
]);

 // At this point $validated contains only valid, safe data
 User::create($validated);

 return redirect()->back()->with('status', 'User created
successfully!');
}Code language: PHP (php)

https://1v0.net/blog/mastering-validation-rules-in-laravel-12/
https://1v0.net/blog/mastering-validation-rules-in-laravel-12/
https://1v0.net

Laravel Starter Kits

Here we use $request->validate() inside a controller method. Laravel automatically
checks the input against the rules:

required means the field must be present and not empty.
string ensures the name is plain text, not an array or number.
max:255 limits the length of the name field to 255 characters.
email ensures the input looks like an email address.
unique:users,email checks the email doesn’t already exist in the users table.
nullable|integer|min:18 means age is optional, but if provided it must be an
integer at least 18.

If validation fails, Laravel will automatically redirect back to the previous page with errors
stored in the session. You can display them in Blade using @error.

2 – Displaying Validation Errors in Blade

// resources/views/users/create.blade.php

<form method="POST" action="{{ route('users.store') }}" class="card
card-body">
 @csrf

 <input type="text" name="name" placeholder="Name" value="{{
old('name') }}" class="form-control mb-2">
 @error('name')
 <div class="text-danger">{{ $message }}</div>
 @enderror

 <input type="email" name="email" placeholder="Email" value="{{
old('email') }}" class="form-control mb-2">
 @error('email')

https://1v0.net/blog/mastering-validation-rules-in-laravel-12/
https://1v0.net

Laravel Starter Kits

 <div class="text-danger">{{ $message }}</div>
 @enderror

 <input type="number" name="age" placeholder="Age" value="{{
old('age') }}" class="form-control mb-2">
 @error('age')
 <div class="text-danger">{{ $message }}</div>
 @enderror

 <button class="btn btn-primary">Create User</button>
</form>Code language: PHP (php)

The old() helper keeps the previous value if the form fails validation. The @error directive
shows the error message for each field if validation fails.

3 – Commonly Used Validation Rules

required — Field must be present and not empty.
nullable — Field can be empty, but if present, it must follow other rules.
email — Must be a valid email format.
url — Must be a valid URL.
min:n / max:n — Minimum or maximum length/size.
numeric / integer — Value must be a number.
date — Must be a valid date (Y-m-d, etc.).
confirmed — Requires a matching _confirmation field (commonly used for
passwords).
unique:table,column — Ensures no duplicates in the database.
exists:table,column — Ensures the value exists in another table (useful for
foreign keys).

Laravel provides dozens of validation rules out of the box. These rules are simple strings,

https://1v0.net/blog/mastering-validation-rules-in-laravel-12/
https://1v0.net

Laravel Starter Kits

but you can also pass arrays if you need more flexibility.

4 – Custom Error Messages

// app/Http/Controllers/UserController.php

public function store(Request $request)
{
 $messages = [
 'name.required' => 'Please enter your full name.',
 'email.required' => 'We need your email address.',
 'email.unique' => 'That email is already taken, please choose
another.',
];

 $validated = $request->validate([
 'name' => 'required|string|max:255',
 'email' => 'required|email|unique:users,email',
 'age' => 'nullable|integer|min:18',
], $messages);

 User::create($validated);

 return redirect()->back()->with('status', 'User created
successfully!');
}Code language: PHP (php)

Here we pass a second argument to validate() with an array of messages. This overrides
Laravel’s default messages with custom, user-friendly text.

https://1v0.net/blog/mastering-validation-rules-in-laravel-12/
https://1v0.net

Laravel Starter Kits

5 – Using Form Request Classes

php artisan make:request StoreUserRequestCode language: CSS (css)

This command creates a new class in app/Http/Requests/StoreUserRequest.php.
Inside it, you define validation rules and messages:

namespace App\Http\Requests;

use Illuminate\Foundation\Http\FormRequest;

class StoreUserRequest extends FormRequest
{
 public function authorize(): bool
 {
 return true; // allow all for now
 }

 public function rules(): array
 {
 return [
 'name' => 'required|string|max:255',
 'email' => 'required|email|unique:users,email',
 'age' => 'nullable|integer|min:18',
];
 }

 public function messages(): array
 {
 return [
 'name.required' => 'Your name is required.',
 'email.unique' => 'This email is already registered.',

https://1v0.net/blog/mastering-validation-rules-in-laravel-12/
https://1v0.net

Laravel Starter Kits

];
 }
}Code language: PHP (php)

Form requests separate validation logic from controllers. You can now type-hint this request
class in your controller:

// app/Http/Controllers/UserController.php

public function store(StoreUserRequest $request)
{
 User::create($request->validated());
 return redirect()->back()->with('status', 'User created!');
}Code language: PHP (php)

This makes your controllers cleaner and your validation rules reusable across multiple
places.

6 – Conditional Validation

// Example: phone is required only if contact_method = phone

$request->validate([
 'contact_method' => 'required|in:email,phone',
 'email' => 'required_if:contact_method,email|email',
 'phone' => 'required_if:contact_method,phone|digits:10',
]);Code language: PHP (php)

Here, required_if makes the email field required if contact_method is set to “email”,
and the phone field required if “phone” is selected. This gives you dynamic validation
depending on user choices.

https://1v0.net/blog/mastering-validation-rules-in-laravel-12/
https://1v0.net

Laravel Starter Kits

7 – Custom Validation Rules

php artisan make:rule UppercaseCode language: CSS (css)

This generates a rule class. Inside you define your custom logic:

// app/Rules/Uppercase.php

namespace App\Rules;

use Closure;
use Illuminate\Contracts\Validation\ValidationRule;

class Uppercase implements ValidationRule
{
 public function validate(string $attribute, mixed $value, Closure
$fail): void
 {
 if (strtoupper($value) !== $value) {
 $fail('The :attribute must be uppercase.');
 }
 }
}Code language: PHP (php)

Now you can use it like this:

$request->validate([
 'code' => ['required', new \App\Rules\Uppercase],
]);Code language: PHP (php)

This ensures the code field is always uppercase. Custom rules let you handle business logic
that built-in rules don’t cover.

https://1v0.net/blog/mastering-validation-rules-in-laravel-12/
https://1v0.net

Laravel Starter Kits

Wrapping Up

You now have a strong understanding of validation in Laravel 12: from basic rules and error
messages to form requests and custom validators. Validation is a core part of keeping your
app secure and reliable, and Laravel makes it both powerful and easy to use.

As you build bigger apps, you’ll often combine multiple rules, create reusable form request
classes, and even add custom validation rules specific to your project’s business logic.

Next Steps

Once you’re comfortable with the basics of Laravel validation, here are some advanced
topics you can explore to take your skills further:

File Upload Validation: Learn to validate file types, sizes, and dimensions (e.g.,
images, PDFs).
Regex Rules: Use regular expressions for highly customized validation logic.
Sanitizing Input: Combine validation with data cleaning (like trimming whitespace,
escaping HTML).
Cross-Field Validation: Write rules that compare multiple fields (e.g., start_date
must be before end_date).
API Validation: Apply validation rules in API controllers and return JSON error
responses.
Localization: Provide validation error messages in multiple languages for

https://1v0.net/blog/mastering-validation-rules-in-laravel-12/
https://1v0.net

Laravel Starter Kits

international apps.

These next steps will help you build more robust, secure, and user-friendly applications
where data is always validated properly before saving.

https://1v0.net/blog/mastering-validation-rules-in-laravel-12/
https://1v0.net

