
Laravel Starter Kits

Optimizing Laravel for High Concurrency with Octane

Optimizing Laravel for High Concurrency with Octane
By default, Laravel boots the entire framework on every request. This design is flexible but
adds overhead. Laravel Octane removes that overhead by keeping the app in memory
between requests using Swoole or RoadRunner. The result? Apps that handle thousands of
requests per second with minimal latency. In this guide, we’ll install Octane, configure
workers, run benchmarks, and compare results.

1 – Install Octane
Install Octane and choose a server engine. Swoole is the most feature-rich option.

composer require laravel/octane
php artisan octane:install
Code language: Bash (bash)

This installs Octane’s service provider and config. You’ll be asked to choose Swoole or
RoadRunner. Swoole provides task workers, coroutines, and better concurrency support.

2 – Running Octane
You can run Octane with Artisan. By default, it uses port 8000.

https://1v0.net/blog/optimizing-laravel-for-high-concurrency-with-octane/
https://1v0.net/blog/optimizing-laravel-for-high-concurrency-with-octane/
https://1v0.net

Laravel Starter Kits

php artisan octane:start --server=swoole --port=8000
Code language: Bash (bash)

This boots Laravel once, then keeps it in memory across requests. Startup overhead
(autoloading, config, service providers) is eliminated on subsequent requests.

3 – Worker Configuration
Octane uses workers to handle requests. Configure workers in config/octane.php.

// config/octane.php (snippet)
'workers' => 8,
'task_workers' => 4,
'max_requests' => 1000,
Code language: PHP (php)

workers are processes handling HTTP requests. task_workers run async tasks like
broadcasting or sending emails. max_requests controls how many requests a worker
handles before restarting (to free memory leaks).

4 – Benchmarking Octane
Let’s compare performance using ab (Apache Bench) or wrk. First, test the default PHP-
FPM setup:

Default PHP-FPM (without Octane)
ab -n 1000 -c 50 http://127.0.0.1:8000/
Code language: Bash (bash)

https://1v0.net/blog/optimizing-laravel-for-high-concurrency-with-octane/
https://1v0.net

Laravel Starter Kits

Typical result: ~200 requests/sec with ~50ms latency.

With Octane + Swoole
ab -n 1000 -c 50 http://127.0.0.1:8000/
Code language: Bash (bash)

Typical result: ~1,500 requests/sec with ~5ms latency. That’s a 7x performance boost just
by running under Octane.

5 – Octane Tasks
Swoole’s task workers let you run async jobs without queues. This is useful for lightweight
background tasks.

// routes/web.php
use Laravel\Octane\Facades\Octane;

Route::get('/report', function () {
 Octane::concurrently([
 fn () => DB::table('users')->count(),
 fn () => DB::table('orders')->count(),
]);
});
Code language: PHP (php)

This runs multiple DB queries concurrently inside Octane. Great for speeding up dashboards
and reports. For larger workloads (like sending thousands of emails), stick to queues.

https://1v0.net/blog/how-to-use-laravel-queues-for-faster-performance
https://1v0.net/blog/optimizing-laravel-for-high-concurrency-with-octane/
https://1v0.net

Laravel Starter Kits

6 – Combining Octane with Caching
Octane boosts raw performance, but combining it with Redis caching makes apps both fast
and efficient. Cached queries served from memory under Swoole can drop response times to
under 2ms.

7 – Monitoring Octane Performance
Octane removes Laravel’s per-request boot, which means memory leaks or long-running
tasks can degrade performance. Monitor with Telescope or external tools like New Relic and
Blackfire.

Wrapping Up
Laravel Octane is a game-changer for high concurrency. By keeping the app in memory,
Octane delivers massive performance boosts with minimal changes to your code. We
installed Octane, configured workers, benchmarked performance, ran concurrent tasks, and
combined it with caching. With proper monitoring and queues, Octane lets Laravel handle
enterprise-scale traffic with ease.

https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file
https://1v0.net/blog/using-laravel-telescope-to-debug-performance-issues
https://1v0.net/blog/optimizing-laravel-for-high-concurrency-with-octane/
https://1v0.net

Laravel Starter Kits

What’s Next
10 Proven Ways to Optimize Laravel for High Traffic — Octane is just one piece of the
optimization puzzle.
Caching Strategies in Laravel: Redis vs Database vs File — combine Octane with
effective caching strategies.
Using Laravel Telescope to Debug Performance Issues — monitor queries, requests,
and memory leaks in Octane apps.

https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic
https://1v0.net/blog/caching-strategies-in-laravel-redis-vs-database-vs-file
https://1v0.net/blog/using-laravel-telescope-to-debug-performance-issues
https://1v0.net/blog/optimizing-laravel-for-high-concurrency-with-octane/
https://1v0.net

