
Laravel Starter Kits

PayPal Integration in Laravel (Step by Step)

PayPal Integration in Laravel (Step by Step)
PayPal remains one of the most widely used payment gateways globally. Integrating it into
your Laravel app allows you to accept payments from millions of users. In this guide, we’ll
set up PayPal SDK, configure API credentials, create routes for checkout, handle webhooks
for payment confirmation, and build a simple Blade UI to process PayPal transactions.

1 – Install PayPal SDK
Use Composer to install the official PayPal REST SDK.

composer require paypal/rest-api-sdk-phpCode language: Bash (bash)

This package provides the classes you need to create payment requests, handle approvals,
and confirm completed payments via PayPal APIs.

2 – Configure PayPal Credentials
Add your sandbox or live API credentials to .env:

PAYPAL_CLIENT_ID=your-sandbox-client-id PAYPAL_SECRET=your-sandbox-secret
PAYPAL_MODE=sandbox # or live

https://1v0.net/blog/paypal-integration-in-laravel-step-by-step/
https://1v0.net/blog/paypal-integration-in-laravel-step-by-step/
https://1v0.net

Laravel Starter Kits

Keep two sets of credentials: sandbox for testing and live for production. Never commit
real secrets to your repository.

3 – Create PayPal Service
Encapsulate PayPal logic in a service class for cleaner controllers.

// app/Services/PayPalService.php
namespace App\Services;

use PayPal\Rest\ApiContext;
use PayPal\Auth\OAuthTokenCredential;
use PayPal\Api\Amount;
use PayPal\Api\Payer;
use PayPal\Api\Payment;
use PayPal\Api\PaymentExecution;
use PayPal\Api\RedirectUrls;
use PayPal\Api\Transaction;

class PayPalService
{
 protected $apiContext;

 public function __construct()
 {
 $this->apiContext = new ApiContext(
 new OAuthTokenCredential(
 config('services.paypal.client_id'),
 config('services.paypal.secret')
)
);
 $this->apiContext->setConfig([
 'mode' => config('services.paypal.mode', 'sandbox'),

https://1v0.net/blog/paypal-integration-in-laravel-step-by-step/
https://1v0.net

Laravel Starter Kits

]);
 }

 public function createPayment($amount, $currency = 'USD')
 {
 $payer = new Payer();
 $payer->setPaymentMethod('paypal');

 $amountObj = new Amount();
 $amountObj->setTotal($amount)->setCurrency($currency);

 $transaction = new Transaction();
 $transaction->setAmount($amountObj)->setDescription("Order
Payment");

 $redirectUrls = new RedirectUrls();
 $redirectUrls->setReturnUrl(url('/paypal/success'))
 ->setCancelUrl(url('/paypal/cancel'));

 $payment = new Payment();
 $payment->setIntent('sale')
 ->setPayer($payer)
 ->setTransactions([$transaction])
 ->setRedirectUrls($redirectUrls);

 return $payment->create($this->apiContext);
 }

 public function executePayment($paymentId, $payerId)
 {
 $payment = Payment::get($paymentId, $this->apiContext);
 $execution = new PaymentExecution();
 $execution->setPayerId($payerId);

 return $payment->execute($execution, $this->apiContext);
 }
}Code language: PHP (php)

https://1v0.net/blog/paypal-integration-in-laravel-step-by-step/
https://1v0.net

Laravel Starter Kits

This service handles both creating a payment (with redirect URLs) and executing it after
PayPal approves the transaction. Wrapping logic in a service keeps controllers lean.

4 – Checkout Controller
Create a controller to start the payment and handle PayPal redirects.

// app/Http/Controllers/PayPalController.php
namespace App\Http\Controllers;

use Illuminate\Http\Request;
use App\Services\PayPalService;

class PayPalController extends Controller
{
 protected $paypal;

 public function __construct(PayPalService $paypal)
 {
 $this->paypal = $paypal;
 }

 public function checkout()
 {
 $payment = $this->paypal->createPayment(19.99);
 return redirect($payment->getApprovalLink());
 }

 public function success(Request $request)
 {
 $paymentId = $request->query('paymentId');
 $payerId = $request->query('PayerID');

https://1v0.net/blog/paypal-integration-in-laravel-step-by-step/
https://1v0.net

Laravel Starter Kits

 $result = $this->paypal->executePayment($paymentId, $payerId);

 // Update DB: mark order as paid

 return view('paypal.success', ['result' => $result]);
 }

 public function cancel()
 {
 return view('paypal.cancel');
 }
}Code language: PHP (php)

The checkout method redirects users to PayPal. After approval, PayPal returns to
success, where we execute the payment and mark the order as paid. The cancel method
simply handles user cancellations.

5 – Routes
Add routes to connect the flow.

// routes/web.php
use App\Http\Controllers\PayPalController;

Route::get('/paypal/checkout', [PayPalController::class, 'checkout']);
Route::get('/paypal/success', [PayPalController::class, 'success']);
Route::get('/paypal/cancel', [PayPalController::class, 'cancel']);Code
language: PHP (php)

These routes cover the full PayPal checkout cycle: start, success, and cancel. In production,
secure them with auth checks to link payments to logged-in users.

https://1v0.net/blog/paypal-integration-in-laravel-step-by-step/
https://1v0.net

Laravel Starter Kits

6 – UI: PayPal Button
You can use PayPal’s JS SDK to render a checkout button instead of a simple link.

<!-- resources/views/paypal/checkout.blade.php -->
@extends('layouts.app')

@section('content')
<div class="container">
 <h1>Pay with PayPal</h1>
 <div id="paypal-button-container"></div>
</div>

<script src="https://www.paypal.com/sdk/js?client-id={{
config('services.paypal.client_id') }}¤cy=USD"></script>
<script>
paypal.Buttons({
 createOrder: function() {
 return fetch('/paypal/checkout')
 .then(res => res.text());
 },
 onApprove: function(data, actions) {
 window.location.href =
'/paypal/success?paymentId='+data.paymentID+'&PayerID='+data.payerID;
 }
}).render('#paypal-button-container');
</script>
@endsectionCode language: HTML, XML (xml)

This example renders PayPal’s official button on your page. Clicking it starts the checkout,
and PayPal handles authentication and redirects. Always test in sandbox before going live.

https://1v0.net/blog/paypal-integration-in-laravel-step-by-step/
https://1v0.net

Laravel Starter Kits

Wrapping Up
You’ve successfully integrated PayPal into Laravel. You installed the SDK, configured
credentials, built a service for clean code, handled checkout, and tested payments with a UI
button. With this flow, you can accept PayPal transactions securely and expand your app’s
payment options.

What’s Next
How to Build a Multi-Auth API with Laravel & Sanctum
Using Laravel Passport for Advanced API Authentication
Integrating Laravel with Third-Party APIs (Mail, SMS, Payment)

https://1v0.net/blog/how-to-build-a-multi-auth-api-with-laravel-sanctum
https://1v0.net/blog/using-laravel-passport-for-advanced-api-authentication
https://1v0.net/blog/integrating-laravel-with-third-party-apis-mail-sms-payment
https://1v0.net/blog/paypal-integration-in-laravel-step-by-step/
https://1v0.net

