
Laravel Starter Kits

Query Performance Tuning in Laravel + MySQL

Query Performance Tuning in Laravel + MySQL
Even well-built Laravel apps can slow down when queries become inefficient. Performance
tuning involves analyzing how queries run, indexing properly, caching results, and
monitoring live traffic. In this guide, you’ll learn practical techniques to tune MySQL queries
in Laravel, from EXPLAIN plans to eager loading, indexes, and caching. We’ll also add a
simple UI profiler to visualize queries during development.

1 – Find Slow Queries with Laravel Debug Tools
Enable query logging in Laravel to see what queries run and how long they take. In dev, you
can log all queries easily:

// app/Providers/AppServiceProvider.php (boot)
use Illuminate\Support\Facades\DB;
use Illuminate\Support\Facades\Log;

public function boot(): void
{
 DB::listen(function ($query) {
 Log::info(
 $query->sql,
 ['bindings' => $query->bindings, 'time_ms' =>
$query->time]
);
 });
}Code language: PHP (php)

This hooks into Laravel’s DB layer and logs every query’s SQL, bindings, and runtime to

https://1v0.net/blog/query-performance-tuning-in-laravel-mysql/
https://1v0.net/blog/query-performance-tuning-in-laravel-mysql/
https://1v0.net

Laravel Starter Kits

storage/logs/laravel.log. Use this in development or staging only—it can be noisy in
production.

2 – Analyze Queries with EXPLAIN
Use MySQL’s EXPLAIN to see how a query executes. This reveals whether indexes are used
and where full scans happen.

EXPLAIN SELECT * FROM orders WHERE status = 'paid' ORDER BY created_at
DESC;Code language: SQL (Structured Query Language) (sql)

If the result shows “Using where; Using index” you’re good. If it says “Using filesort” or
“Using temporary”, you may need to add or adjust indexes.

3 – Add Proper Indexes in Migrations
Indexes speed up WHERE, ORDER BY, and JOIN clauses. Add them in migrations for
frequently queried columns.

// database/migrations/xxxx_add_indexes_to_orders.php
Schema::table('orders', function (Blueprint $table) {
 $table->index('status');
 $table->index(['user_id','created_at']); // compound index
});Code language: PHP (php)

status gets a single index for filters like WHERE status = 'paid'. A compound index on
(user_id, created_at) speeds up queries filtering by user and sorting by creation date.

https://1v0.net/blog/query-performance-tuning-in-laravel-mysql/
https://1v0.net

Laravel Starter Kits

Don’t over-index—each index costs extra storage and slower writes.

4 – Reduce N+1 Queries with Eager Loading
N+1 queries often cause slowdowns. Fix them with with() or load() to prefetch related
data in fewer queries.

// Slow (lazy loading)
$users = User::all();
foreach ($users as $user) {
 echo $user->posts->count(); // query per user
}

// Fast (eager loading)
$users = User::withCount('posts')->get();
foreach ($users as $user) {
 echo $user->posts_count; // no extra queries
}Code language: PHP (php)

withCount() lets you grab relation counts directly with one query, instead of running a
query for every loop iteration. This can save hundreds of queries on list pages.

5 – Optimize Pagination Queries
Pagination with OFFSET gets slower on large tables because MySQL still scans skipped
rows. Use where('id','>',...) or chunkById() for “keyset pagination.”

https://1v0.net/blog/query-performance-tuning-in-laravel-mysql/
https://1v0.net

Laravel Starter Kits

// Classic pagination (slow with big OFFSET)
$posts = Post::orderBy('id')->offset(50000)->limit(20)->get();

// Keyset pagination (fast)
$posts = Post::where('id','>', $lastSeenId)
 ->orderBy('id')
 ->limit(20)
 ->get();Code language: PHP (php)

Keyset pagination avoids scanning all skipped rows, making it dramatically faster on large
datasets. Store the last seen ID in your pagination links.

6 – Cache Heavy Queries
When a query result doesn’t change often, cache it in Redis or the file cache. Use
remember() to wrap queries.

use Illuminate\Support\Facades\Cache;

$stats = Cache::remember('dashboard_stats', 600, function () {
 return Order::selectRaw('status, COUNT(*) as total')
 ->groupBy('status')
 ->pluck('total','status');
});Code language: PHP (php)

This caches the grouped order counts for 10 minutes (600 seconds). Subsequent requests
return from cache instantly instead of rerunning the query.

https://1v0.net/blog/query-performance-tuning-in-laravel-mysql/
https://1v0.net

Laravel Starter Kits

7 – UI Example: Query Profiler Panel
Let’s add a simple UI snippet to show executed queries on a page during development. This
is a lightweight alternative to installing Telescope or Debugbar.

<!-- resources/views/layouts/partials/query-profiler.blade.php -->
@php
 $queries = DB::getQueryLog();
@endphp

@if(app()->environment('local'))
 <div class="container mt-5">
 <h5>Executed Queries ({{ count($queries) }})</h5>
 <ul class="list-group">
 @foreach($queries as $q)
 <li class="list-group-item">
 {{ $q['query'] }}
 [{{ implode(',', $q['bindings']) }}]
 ({{ $q['time'] }} ms)

 @endforeach

 </div>
@endifCode language: PHP (php)

This partial prints all queries on the page with execution times. To enable logging, call
DB::enableQueryLog() in a service provider for your local environment.

Wrapping Up
Performance tuning in Laravel is a mix of good schema design, query inspection, caching,
and avoiding N+1 traps. You saw how to log and analyze queries, add indexes, use eager

https://1v0.net/blog/query-performance-tuning-in-laravel-mysql/
https://1v0.net

Laravel Starter Kits

loading, optimize pagination, and cache results. With these tools, your Laravel + MySQL
app can handle far more traffic smoothly.

What’s Next
10 Proven Ways to Optimize Laravel for High Traffic
Handling Large Data Sets with Chunking & Cursors
Laravel and Docker: Setting Up a Scalable Dev Environment

https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic
https://1v0.net/blog/handling-large-data-sets-in-laravel-with-chunking-cursors
https://1v0.net/blog/laravel-and-docker-setting-up-a-scalable-dev-environment
https://1v0.net/blog/query-performance-tuning-in-laravel-mysql/
https://1v0.net

