
Laravel Starter Kits

Securing Laravel APIs with Sanctum: Complete Guide

APIs power modern applications — from single-page apps (SPAs) to mobile apps and even
IoT devices. But APIs also open doors to attackers if not secured properly. That’s where
Laravel Sanctum comes in. It’s a lightweight package that makes it easy to protect your
Laravel APIs with tokens, cookies, and middleware.

In this tutorial, you’ll learn how to secure your Laravel 12 APIs with Sanctum. We’ll go
step by step: installing Sanctum, configuring it, issuing tokens, protecting routes, and using
it with SPAs and mobile clients. Along the way, we’ll explain key concepts so you understand
not just how, but why it works.

1 – What is Laravel Sanctum?
Sanctum is Laravel’s recommended way to authenticate APIs. It supports two main use
cases:

API tokens: Ideal for mobile apps or external services. Each user can create and
manage personal access tokens.
SPA authentication: Uses Laravel’s session cookies with CSRF protection to secure
single-page apps built with React, Vue, etc.

Unlike Passport (Laravel’s OAuth2 package), Sanctum is simple, lightweight, and perfect for
most apps that don’t need full OAuth2 complexity.

https://1v0.net/blog/securing-laravel-apis-with-sanctum-complete-guide/
https://1v0.net/blog/securing-laravel-apis-with-sanctum-complete-guide/
https://1v0.net

Laravel Starter Kits

2 – Install and Configure Sanctum
First, install Sanctum via Composer:

composer require laravel/sanctumCode language: Bash (bash)

Publish the Sanctum configuration and migration files:

php artisan vendor:publish --
provider="Laravel\Sanctum\SanctumServiceProvider"
php artisan migrateCode language: Bash (bash)

This creates a personal_access_tokens table in your database, which will store API
tokens for users.

Now, add Sanctum’s middleware in app/Http/Kernel.php under the api group:

// app/Http/Kernel.php
protected $middlewareGroups = [
 'api' => [
\Laravel\Sanctum\Http\Middleware\EnsureFrontendRequestsAreStateful::cl
ass,
 'throttle:api',
 \Illuminate\Routing\Middleware\SubstituteBindings::class,
],
];Code language: PHP (php)

3 – Enable Token Abilities in the User Model
To let users issue and manage tokens, add the HasApiTokens trait to your User model:

// app/Models/User.php
namespace App\Models;

https://1v0.net/blog/securing-laravel-apis-with-sanctum-complete-guide/
https://1v0.net

Laravel Starter Kits

use Illuminate\Foundation\Auth\User as Authenticatable;
use Laravel\Sanctum\HasApiTokens;

class User extends Authenticatable
{
 use HasApiTokens;

 protected $fillable = ['name','email','password'];
}Code language: PHP (php)

Now each user can create personal access tokens with abilities (like create-posts,
delete-posts).

4 – Issue and Use API Tokens
Let’s create an endpoint where a user can log in and receive a token:

// routes/api.php
use Illuminate\Http\Request;
use Illuminate\Support\Facades\Hash;
use App\Models\User;

Route::post('/login', function (Request $request) {
 $request->validate([
 'email' => 'required|email',
 'password' => 'required',
]);

 $user = User::where('email',$request->email)->first();

 if (! $user || ! Hash::check($request->password, $user->password))
{
 return response()->json(['message' => 'Invalid credentials'],

https://1v0.net/blog/securing-laravel-apis-with-sanctum-complete-guide/
https://1v0.net

Laravel Starter Kits

401);
 }

 $token = $user->createToken('api-token',['create-posts','delete-
posts'])->plainTextToken;

 return response()->json(['token' => $token]);
});Code language: PHP (php)

Now, the user can authenticate by including the token in the Authorization header:

curl -H "Authorization: Bearer {TOKEN}"
http://localhost:8000/api/userCode language: Bash (bash)

Tokens can also be scoped. For example, you could give one token create-posts and
another read-posts, letting you restrict what each client can do.

5 – Protect API Routes with Sanctum Middleware
To secure your API endpoints, apply the auth:sanctum middleware:

// routes/api.php
Route::middleware('auth:sanctum')->get('/user', function (Request
$request) {
 return $request->user();
});Code language: PHP (php)

Now, only requests with a valid Sanctum token will succeed. Invalid or missing tokens
return 401 Unauthorized.

https://1v0.net/blog/securing-laravel-apis-with-sanctum-complete-guide/
https://1v0.net

Laravel Starter Kits

6 – Sanctum with SPAs
If you’re building a Vue, React, or Angular SPA that talks to your Laravel backend, Sanctum
provides cookie-based authentication. Here’s how it works:

The SPA makes a login request to /login with credentials.
Laravel responds with a session cookie.
Subsequent requests include this cookie, protected by CSRF tokens.

To enable this, add your SPA’s domain to SANCTUM_STATEFUL_DOMAINS in .env:

.env
SANCTUM_STATEFUL_DOMAINS=localhost:3000,myapp.comCode language: Bash (bash)

This lets Sanctum recognize stateful requests from your frontend, making cookie-based auth
work seamlessly.

7 – Common Errors & Fixes
401 Unauthorized: Make sure the token is included in the Authorization header
or the SPA is listed in SANCTUM_STATEFUL_DOMAINS.
CSRF mismatch: When using SPA auth, ensure you include the X-XSRF-TOKEN
header with requests.
Token not found: Run php artisan migrate to create the
personal_access_tokens table.

https://1v0.net/blog/securing-laravel-apis-with-sanctum-complete-guide/
https://1v0.net

Laravel Starter Kits

Wrapping Up
You’ve learned how to secure Laravel APIs with Sanctum. We installed and configured
Sanctum, issued API tokens, protected routes, and even integrated it with SPAs. This
lightweight solution is perfect for most apps, providing strong security without the
complexity of OAuth2.

What’s Next
How to Add JWT Authentication to Laravel APIs — explore an alternative token-based
approach.
Building a Mobile App Backend with Laravel 12 API — use Sanctum in a mobile
environment.
How to Build a REST API with Laravel 12 & Sanctum — complete implementation
guide.

https://1v0.net/blog/how-to-add-jwt-authentication-to-laravel-apis
https://1v0.net/blog/building-a-mobile-app-backend-with-laravel-12-api
https://1v0.net/blog/how-to-build-a-rest-api-with-laravel-12-and-sanctum
https://1v0.net/blog/securing-laravel-apis-with-sanctum-complete-guide/
https://1v0.net

