
Laravel Starter Kits

Soft Deletes in Laravel: Restore, Force Delete, and
Prune Data

Soft Deletes in Laravel: Restore, Force Delete, and
Prune Data
Soft deletes let you “delete” rows without losing them immediately. Instead of removing
data, Eloquent sets a deleted_at timestamp and excludes those rows from normal queries.
You can later restore or permanently remove them, and even prune old soft-deleted data on
a schedule. In this guide, you’ll enable soft deletes, build a Recycle Bin UI, and automate
cleanup safely.

1 – Add deleted_at to Your Table
Add a soft delete column using the schema builder. Use softDeletes() (or
softDeletesTz() if you prefer timezone-aware timestamps).

//
database/migrations/2025_08_27_000000_add_soft_deletes_to_posts_table.
php
use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Support\Facades\Schema;

return new class extends Migration {
 public function up(): void
 {
 Schema::table('posts', function (Blueprint $table) {
 $table->softDeletes(); // adds nullable deleted_at
TIMESTAMP

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

Laravel Starter Kits

 });
 }

 public function down(): void
 {
 Schema::table('posts', function (Blueprint $table) {
 $table->dropSoftDeletes(); // drops deleted_at
 });
 }
};Code language: PHP (php)

This migration adds a deleted_at column that Eloquent uses to hide “trashed” rows. The
down() method makes the change reversible.

Run the migration:

php artisan migrateCode language: Bash (bash)

After running, the table is ready to support soft deletes without breaking existing queries.

2 – Enable Soft Deletes on the Model
Add the SoftDeletes trait to your Eloquent model. This automatically excludes trashed
rows from default queries such as Model::all().

// app/Models/Post.php
namespace App\Models;

use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\SoftDeletes;

class Post extends Model
{

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

Laravel Starter Kits

 use SoftDeletes;

 protected $fillable = ['user_id','title','body','status'];
}Code language: PHP (php)

With the trait, calling Post::query() ignores rows where deleted_at is not null. You’ll
use special helpers to include or filter trashed rows when needed.

3 – Soft Delete, Restore, and Force Delete
Soft delete marks the row; restore brings it back; force delete removes it permanently from
the database.

// Soft delete a post
$post = Post::findOrFail($id);
$post->delete(); // sets deleted_at

// Restore a soft-deleted post
$post = Post::withTrashed()->findOrFail($id);
$post->restore(); // clears deleted_at

// Permanently delete
$post = Post::withTrashed()->findOrFail($id);
$post->forceDelete(); // removes row from DBCode language: PHP (php)

Use withTrashed() to access items regardless of deletion state, then call restore() or
forceDelete() as appropriate.

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

Laravel Starter Kits

4 – Query Helpers for Trashed Rows
These helpers give you fine control over which rows are returned in queries.

// Include trashed + non-trashed
$all = Post::withTrashed()->latest()->paginate(10);

// Only trashed
$trashed = Post::onlyTrashed()->orderBy('deleted_at','desc')->get();

// Explicitly exclude trashed (same as default)
$active = Post::withoutTrashed()->get();Code language: PHP (php)

withTrashed() is useful for admin reports; onlyTrashed() powers a Recycle Bin;
withoutTrashed() matches the default behavior when the trait is enabled.

5 – Routes & Controller for a Recycle Bin UI
Expose routes to view trashed items, restore them, or permanently delete them. Authorize
these actions to admin roles only.

// routes/web.php (snippet)
use App\Http\Controllers\PostTrashController;

Route::middleware(['auth'])->group(function () {
 Route::get('/posts/trash', [PostTrashController::class,
'index'])->name('posts.trash.index');
 Route::patch('/posts/{id}/restore', [PostTrashController::class,
'restore'])->name('posts.trash.restore');
 Route::delete('/posts/{id}/force', [PostTrashController::class,
'force'])->name('posts.trash.force');
});Code language: PHP (php)

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

Laravel Starter Kits

These routes provide a list view plus endpoints to restore or force delete a specific post. Use
policies/middleware to ensure only privileged users can perform destructive actions.

// app/Http/Controllers/PostTrashController.php
namespace App\Http\Controllers;

use App\Models\Post;
use Illuminate\Http\Request;

class PostTrashController extends Controller
{
 public function index()
 {
 $posts = Post::onlyTrashed()
 ->orderBy('deleted_at','desc')
 ->paginate(10);

 return view('posts.trash', compact('posts'));
 }

 public function restore($id)
 {
 $post = Post::withTrashed()->findOrFail($id);
 // $this->authorize('restore', $post); // optional policy
 $post->restore();

 return back()->with('status','Post restored.');
 }

 public function force($id)
 {
 $post = Post::withTrashed()->findOrFail($id);
 // $this->authorize('forceDelete', $post); // optional policy
 $post->forceDelete();

 return back()->with('status','Post permanently deleted.');
 }
}Code language: PHP (php)

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

Laravel Starter Kits

The controller paginates trashed posts and provides RESTful handlers to restore or
permanently delete items. Optionally enforce policies for extra safety.

6 – UI: Recycle Bin Blade View
Here’s a simple Recycle Bin with Restore and Delete buttons. Use CSRF and method
spoofing to protect the actions.

<!-- resources/views/posts/trash.blade.php -->
@extends('layouts.app')

@section('content')
<div class="container">
 <h1 class="mb-4">Recycle Bin</h1>

 @if(session('status'))
 <div class="alert alert-success">{{ session('status') }}</div>
 @endif

 @forelse($posts as $post)
 <div class="card mb-3">
 <div class="card-body d-flex justify-content-between align-
items-center">
 <div>
 <h5 class="card-title mb-1">{{ $post->title }}</h5>
 <small class="text-muted">Deleted at: {{ $post->deleted_at
}}</small>
 </div>

 <div class="d-flex gap-2">
 <form method="POST" action="{{ route('posts.trash.restore',
$post->id) }}">
 @csrf @method('PATCH')

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

Laravel Starter Kits

 <button class="btn btn-outline-secondary">Restore</button>
 </form>

 <form method="POST" action="{{ route('posts.trash.force',
$post->id) }}"
 onsubmit="return confirm('Permanently delete this
post?');">
 @csrf @method('DELETE')
 <button class="btn btn-danger">Delete Forever</button>
 </form>
 </div>
 </div>
 </div>
 @empty
 <p class="text-muted">No trashed posts.</p>
 @endforelse

 {{ $posts->links() }}
</div>
@endsectionCode language: PHP (php)

This UI lists trashed posts with the deletion timestamp and action buttons. Restore unsets
deleted_at, while “Delete Forever” removes the row from the database.

7 – Scheduled Pruning of Old Soft-Deleted Rows
Use model pruning to automatically purge items that have been soft-deleted for a while
(e.g., 30 days).

// app/Models/Post.php (add trait & prunable() if you like)
namespace App\Models;

use Illuminate\Database\Eloquent\Model;

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

Laravel Starter Kits

use Illuminate\Database\Eloquent\SoftDeletes;
use Illuminate\Database\Eloquent\Prunable;

class Post extends Model
{
 use SoftDeletes, Prunable;

 public function prunable()
 {
 // prune items soft-deleted more than 30 days ago
 return static::onlyTrashed()
 ->where('deleted_at', '<', now()->subDays(30));
 }
}Code language: PHP (php)

The Prunable trait defines a query selecting candidates for permanent removal. Here we
keep trashed posts for 30 days before pruning them.

// app/Console/Kernel.php (schedule pruning)
protected function schedule(\Illuminate\Console\Scheduling\Schedule
$schedule): void
{
 // Run daily at 02:00; add --pretend in staging to preview
deletions
 $schedule->command('model:prune', [
 '--model' => [\App\Models\Post::class],
])->dailyAt('02:00');
}Code language: PHP (php)

This schedules the built-in model:prune command to run daily. In non-production
environments, consider --pretend to preview what would be deleted.

Remember to set up your cron to run the Laravel scheduler: * * * * * php
/path/to/artisan schedule:run >> /dev/null 2>&1.

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

Laravel Starter Kits

Wrapping Up
Soft deletes provide a safe middle ground between “active” and “gone.” You added a
deleted_at column, enabled the SoftDeletes trait, implemented restore and force
delete flows, built a Recycle Bin UI, and configured pruning to keep the database lean. This
pattern reduces accidental loss and gives you clean, auditable lifecycle management for
records.

What’s Next
Handling Large Data Sets with Chunking & Cursors
How to Use Eloquent API Resources for Clean APIs
Filtering and Searching with Eloquent Query Builder

https://1v0.net/blog/handling-large-data-sets-in-laravel-with-chunking-cursors
https://1v0.net/blog/how-to-use-eloquent-api-resources-for-clean-apis
https://1v0.net/blog/filtering-and-searching-with-laravel-eloquent-query-builder
https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

