1v02E

Soft Deletes in Laravel: Restore, Force Delete, and
Prune Data

Soft Deletes in Laravel: Restore, Force Delete, and
Prune Data

Soft deletes let you “delete” rows without losing them immediately. Instead of removing
data, Eloquent sets a deleted at timestamp and excludes those rows from normal queries.
You can later restore or permanently remove them, and even prune old soft-deleted data on
a schedule. In this guide, you'll enable soft deletes, build a Recycle Bin Ul, and automate
cleanup safely.

1 - Add deleted at to Your Table

Add a soft delete column using the schema builder. Use softDeletes() (or
softDeletesTz() if you prefer timezone-aware timestamps).

//
database/migrations/2025 08 27 000000 add soft deletes to posts table.
php

use Illuminate\Database\Migrations\Migration;

use Illuminate\Database\Schema\Blueprint;

use Illuminate\Support\Facades\Schema;

return new class extends Migration {
public function up(): void
{
Schema: :table('posts', function (Blueprint $table) {
$table->softDeletes(); // adds nullable deleted at
TIMESTAMP

Laravel Starter Kits

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

1v02E

})s

}

public function down(): void

{
Schema: :table('posts', function (Blueprint $table) {

$table->dropSoftDeletes(); // drops deleted at

})s

}

}; Code language: PHP (php)

This migration adds a deleted at column that Eloquent uses to hide “trashed” rows. The
down () method makes the change reversible.

Run the migration:
php artisan migrateCode language: Bash (bash)

After running, the table is ready to support soft deletes without breaking existing queries.

2 - Enable Soft Deletes on the Model

Add the SoftDeletes trait to your Eloquent model. This automatically excludes trashed
rows from default queries such as Model::all().

// app/Models/Post.php
namespace App\Models;

use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\SoftDeletes;

class Post extends Model

{

Laravel Starter Kits

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

1v02E

use SoftDeletes;

protected $fillable = ['user id', 'title', 'body', 'status'];
}Code language: PHP (php)

With the trait, calling Post: :query () ignores rows where deleted at is not null. You'll
use special helpers to include or filter trashed rows when needed.

3 - Soft Delete, Restore, and Force Delete

Soft delete marks the row; restore brings it back; force delete removes it permanently from
the database.

// Soft delete a post
$post = Post::findOrFail($id);
$post->delete(); // sets deleted_at

// Restore a soft-deleted post
$post = Post::withTrashed()->findOrFail($id);
$post->restore(); // clears deleted at

// Permanently delete
$post = Post::withTrashed()->findOrFail($id);
$post->forceDelete(); // removes row from DBCode language: PHP (php)

Use withTrashed() to access items regardless of deletion state, then call restore() or
forceDelete() as appropriate.

Laravel Starter Kits

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

1v02E

4 - Query Helpers for Trashed Rows

These helpers give you fine control over which rows are returned in queries.

// Include trashed + non-trashed
$all = Post::withTrashed()->latest()->paginate(10);

// Only trashed
$trashed = Post::onlyTrashed()->orderBy('deleted at', 'desc')->get();

// Explicitly exclude trashed (same as default)
$active = Post::withoutTrashed()->get();Code language: PHP (php)

withTrashed() is useful for admin reports; onlyTrashed () powers a Recycle Bin;
withoutTrashed() matches the default behavior when the trait is enabled.

5 - Routes & Controller for a Recycle Bin Ul

Expose routes to view trashed items, restore them, or permanently delete them. Authorize
these actions to admin roles only.

// routes/web.php (snippet)
use App\Http\Controllers\PostTrashController;

Route::middleware(['auth'])->group(function () {
Route::get('/posts/trash', [PostTrashController::class,
'index']) ->name('posts.trash.index');
Route: :patch('/posts/{id}/restore', [PostTrashController::class,
‘restore'])->name('posts.trash.restore');
Route::delete('/posts/{id}/force', [PostTrashController::class,
‘force'])->name('posts.trash.force');
}) ; Code language: PHP (php)

Laravel Starter Kits

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

1v02E

These routes provide a list view plus endpoints to restore or force delete a specific post. Use
policies/middleware to ensure only privileged users can perform destructive actions.

// app/Http/Controllers/PostTrashController.php
namespace App\Http\Controllers;

use App\Models\Post;
use Illuminate\Http\Request;

class PostTrashController extends Controller

{
public function index()
{
$posts = Post::onlyTrashed()
->orderBy('deleted at', 'desc')
->paginate(10);
return view('posts.trash', compact('posts'));
}
public function restore($id)
{
$post = Post::withTrashed()->findOrFail($id);
// $this->authorize('restore', $post); // optional policy
$post->restore();
return back()->with('status', 'Post restored.');
}
public function force($id)
{
$post = Post::withTrashed()->findOrFail($id);
// $this->authorize('forceDelete', $post); // optional policy
$post->forceDelete();
return back()->with('status', 'Post permanently deleted.');
}

}Code language: PHP (php)

Laravel Starter Kits

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

1v02E

The controller paginates trashed posts and provides RESTful handlers to restore or
permanently delete items. Optionally enforce policies for extra safety.

6 - UL: Recycle Bin Blade View

Here’s a simple Recycle Bin with Restore and Delete buttons. Use CSRF and method
spoofing to protect the actions.

<!-- resources/views/posts/trash.blade.php -->
@extends('layouts.app')

@section('content')
<div class="container">
<h1l class="mb-4">Recycle Bin</hl>

@if(session('status'))
<div class="alert alert-success">{{ session('status') }}</div>
@endif

@forelse($posts as $post)
<div class="card mb-3">
<div class="card-body d-flex justify-content-between align-
items-center">
<div>
<h5 class="card-title mb-1">{{ $post->title }}</h5>
<small class="text-muted">Deleted at: {{ $post->deleted at
}}</small>
</div>

<div class="d-flex gap-2">
<form method="POST" action="{{ route('posts.trash.restore’,
$post->id) }}">
@csrf @method('PATCH')

Laravel Starter Kits

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

1v02E

<button class="btn btn-outline-secondary">Restore</button>
</form>

<form method="POST" action="{{ route('posts.trash.force',
$post->id) }}"
onsubmit="return confirm('Permanently delete this

post?');">
@csrf @method('DELETE')
<button class="btn btn-danger">Delete Forever</button>
</form>
</div>
</div>
</div>
@empty
<p class="text-muted">No trashed posts.</p>
@endforelse

{{ $posts->links() }}
</div>
@endsectionCode language: PHP (php)

This Ul lists trashed posts with the deletion timestamp and action buttons. Restore unsets
deleted at, while “Delete Forever” removes the row from the database.

7 - Scheduled Pruning of Old Soft-Deleted Rows

Use model pruning to automatically purge items that have been soft-deleted for a while
(e.g., 30 days).

// app/Models/Post.php (add trait & prunable() if you like)
namespace App\Models;

use Illuminate\Database\Eloquent\Model;

Laravel Starter Kits

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

1v02E

use Illuminate\Database\Eloquent\SoftDeletes;
use Illuminate\Database\Eloquent\Prunable;

class Post extends Model
{

use SoftDeletes, Prunable;

public function prunable()

{
// prune items soft-deleted more than 30 days ago
return static::onlyTrashed()
->where('deleted at', '<', now()->subDays(30));
}

}Code language: PHP (php)

The Prunable trait defines a query selecting candidates for permanent removal. Here we
keep trashed posts for 30 days before pruning them.

// app/Console/Kernel.php (schedule pruning)
protected function schedule(\Illuminate\Console\Scheduling\Schedule
$schedule): void

{
// Run daily at 02:00; add --pretend in staging to preview

deletions
$schedule->command('model:prune', [
'--model' => [\App\Models\Post::class],
])->dailyAt('02:00");
}Code language: PHP (php)

This schedules the built-in model: prune command to run daily. In non-production
environments, consider - -pretend to preview what would be deleted.

Remember to set up your cron to run the Laravel scheduler: * * * * * php
/path/to/artisan schedule:run >> /dev/null 2>&1.

Laravel Starter Kits

https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

1v02E

Wrapping Up

Soft deletes provide a safe middle ground between “active” and “gone.” You added a
deleted at column, enabled the SoftDeletes trait, implemented restore and force
delete flows, built a Recycle Bin Ul, and configured pruning to keep the database lean. This
pattern reduces accidental loss and gives you clean, auditable lifecycle management for
records.

What'’s Next

» Handling Large Data Sets with Chunking & Cursors
* How to Use Eloquent API Resources for Clean APIs

e Filtering and Searching with Eloquent Query Builder

Laravel Starter Kits

https://1v0.net/blog/handling-large-data-sets-in-laravel-with-chunking-cursors
https://1v0.net/blog/how-to-use-eloquent-api-resources-for-clean-apis
https://1v0.net/blog/filtering-and-searching-with-laravel-eloquent-query-builder
https://1v0.net/blog/soft-deletes-in-laravel-restore-force-delete-and-prune-data/
https://1v0.net

