
Laravel Starter Kits

Step-by-Step CI/CD Pipeline Setup for Laravel 12 on
GitHub Actions

Step-by-Step CI/CD Pipeline Setup for Laravel 12 on
GitHub Actions
Continuous Integration and Continuous Deployment (CI/CD) ensures your Laravel 12
projects are always tested, built, and deployed automatically. With GitHub Actions, you
can build pipelines that handle testing, asset compilation, and server deployment whenever
you push to your main branch. In this tutorial, we’ll build a full CI/CD pipeline step by step,
integrating with services like DigitalOcean, AWS, and even Docker-based flows.

1 — Why Use CI/CD with Laravel?
Consistency: Every push runs tests in the same environment (Docker/Ubuntu
runners).
Speed: No more manual deployments—production updates are automated.
Quality: Run PHPUnit, PHPStan, and Laravel Dusk before deploys.
Scalability: Works equally well with EC2, DigitalOcean, or any cloud provider.

If you’ve already set up DigitalOcean Deployments or AWS Deployments, CI/CD ensures
those environments are updated safely and automatically.

https://1v0.net/blog/step-by-step-ci-cd-pipeline-setup-for-laravel-12-on-github-actions/
https://1v0.net/blog/step-by-step-ci-cd-pipeline-setup-for-laravel-12-on-github-actions/
https://1v0.net/blog/how-to-deploy-a-laravel-12-app-on-digitalocean
https://1v0.net/blog/deploying-laravel-on-aws-complete-guide-2025
https://1v0.net/blog/step-by-step-ci-cd-pipeline-setup-for-laravel-12-on-github-actions/
https://1v0.net

Laravel Starter Kits

2 — Basic GitHub Actions Workflow
Create a workflow file in your Laravel repo at .github/workflows/ci.yml. This runs
tests and builds assets on every push to main.

.github/workflows/ci.yml
name: CI

on:
 push:
 branches: ["main"]
 pull_request:

jobs:
 build-test:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v4

 - name: Set up PHP
 uses: shivammathur/setup-php@v2
 with:
 php-version: '8.3'
 extensions: mbstring, bcmath, pdo_mysql

 - name: Install Composer dependencies
 run: composer install --no-interaction --no-progress --prefer-
dist

 - name: Run tests
 run: php artisan testCode language: YAML (yaml)

This workflow installs PHP 8.3 with required extensions, pulls dependencies, and runs
Laravel’s test suite. It ensures every commit is validated before deploying.

https://1v0.net/blog/step-by-step-ci-cd-pipeline-setup-for-laravel-12-on-github-actions/
https://1v0.net

Laravel Starter Kits

3 — Building Frontend Assets
If your app uses Vite for assets, add Node to the pipeline and build before deployment.

- name: Set up Node.js
 uses: actions/setup-node@v4
 with:
 node-version: 20

- name: Install NPM packages
 run: npm ci

- name: Build assets
 run: npm run buildCode language: YAML (yaml)

This step ensures your CSS and JS are compiled, ready for production. Combined with php
artisan config:cache and route:cache, it results in fast deployments (see High
Traffic Optimization).

4 — Deployment to DigitalOcean (via SSH)
One simple approach is deploying with SSH and Rsync. Store your server’s SSH key in
GitHub Secrets.

- name: Deploy to DigitalOcean
 uses: appleboy/ssh-action@v1.2.0
 with:

https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic
https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic
https://1v0.net/blog/step-by-step-ci-cd-pipeline-setup-for-laravel-12-on-github-actions/
https://1v0.net

Laravel Starter Kits

 host: ${{ secrets.DO_HOST }}
 username: ${{ secrets.DO_USER }}
 key: ${{ secrets.DO_SSH_KEY }}
 script: |
 cd /var/www
 ./deploy.shCode language: YAML (yaml)

This uses the ssh-action to connect and run your deploy.sh (see #51 for a full zero-
downtime script). It’s straightforward and great for single-server setups.

5 — Deployment to AWS (CodeDeploy)
For AWS, we recommend using CodeDeploy. Combine this with OIDC for GitHub Actions so
no static IAM keys are needed.

- name: Configure AWS creds
 uses: aws-actions/configure-aws-credentials@v4
 with:
 role-to-assume: arn:aws:iam::123456789012:role/GitHubDeployRole
 aws-region: us-east-1

- name: Upload to S3
 run: aws s3 cp deploy.zip s3://your-bucket/deploy.zip

- name: Trigger CodeDeploy
 run: |
 aws deploy create-deployment \
 --application-name laravel-app \
 --deployment-group-name laravel-asg \
 --s3-location bucket=your-
bucket,key=deploy.zip,bundleType=zipCode language: YAML (yaml)

This triggers a rolling deploy across your Auto Scaling Group without downtime. For the full

https://1v0.net/blog/step-by-step-ci-cd-pipeline-setup-for-laravel-12-on-github-actions/
https://1v0.net

Laravel Starter Kits

AWS walkthrough, see AWS Guide.

6 — Caching for Faster Pipelines
Caching Composer and NPM dependencies drastically speeds up builds. Use GitHub’s cache
action.

- name: Cache Composer
 uses: actions/cache@v4
 with:
 path: vendor
 key: ${{ runner.os }}-composer-${{ hashFiles('**/composer.lock')
}}

- name: Cache NPM
 uses: actions/cache@v4
 with:
 path: ~/.npm
 key: ${{ runner.os }}-npm-${{ hashFiles('**/package-lock.json')
}}Code language: YAML (yaml)

Each run reuses cached dependencies unless composer.lock or package-lock.json
changes, saving minutes. This is part of larger optimization strategies—see 10 Proven Ways
to Optimize Laravel for High Traffic.

https://1v0.net/blog/deploying-laravel-on-aws-complete-guide-2025
https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic
https://1v0.net/blog/10-proven-ways-to-optimize-laravel-for-high-traffic
https://1v0.net/blog/step-by-step-ci-cd-pipeline-setup-for-laravel-12-on-github-actions/
https://1v0.net

Laravel Starter Kits

7 — Deployment Status UI (Optional)
You can add a simple admin-only UI in Laravel to display the last GitHub Actions
deployment status by consuming the GitHub API.

// routes/web.php
use Illuminate\Support\Facades\Http;

Route::middleware(['auth', 'can:viewAdmin'])->get('/deploy-status',
function () {
 $response = Http::withToken(config('services.github.token'))
->get('https://api.github.com/repos/your-org/your-repo/actions/runs?pe
r_page=1');
 $run = $response->json('workflow_runs.0');
 return view('admin.deploy', ['run' => $run]);
});Code language: PHP (php)

This route calls the GitHub Actions API for the latest workflow run and passes it to a Blade
view. Store a GitHub PAT in config/services.php for authentication.

<!-- resources/views/admin/deploy.blade.php -->
@extends('layouts.app')
@section('content')
<div class="container">
 <h1 class="mb-4">Latest Deployment</h1>
 <p>Workflow: {{ $run['name'] }}</p>
 <p>Status: {{ $run['status'] }} / {{
$run['conclusion'] ?? 'in-progress' }}</p>
 <p>Commit: {{ $run['head_commit']['message'] }}</p>
 <p><a href="{{ $run['html_url'] }}" class="btn btn-theme"
target="_blank">View in GitHub</p>
</div>
@endsectionCode language: HTML, XML (xml)

With this UI, your team can see at a glance if the last deployment succeeded—without
leaving your app. For debugging failed jobs, you can also integrate with Using Laravel
Telescope to Debug Performance Issues.

https://1v0.net/blog/using-laravel-telescope-to-debug-performance-issues
https://1v0.net/blog/using-laravel-telescope-to-debug-performance-issues
https://1v0.net/blog/step-by-step-ci-cd-pipeline-setup-for-laravel-12-on-github-actions/
https://1v0.net

Laravel Starter Kits

Wrapping Up
A well-structured GitHub Actions pipeline makes your Laravel 12 workflow smooth: test
every commit, build assets, cache dependencies, and deploy automatically to DigitalOcean
or AWS. This not only saves time but also ensures reliability and confidence with every
release.

What’s Next
How to Deploy a Laravel 12 App on DigitalOcean — pair CI/CD with DO Droplet
deployments.
Deploying Laravel on AWS: Complete Guide (2025) — full AWS production pipelines.
Laravel Deployment Checklist for 2025 — run this before every release.

https://1v0.net/blog/how-to-deploy-a-laravel-12-app-on-digitalocean
https://1v0.net/blog/deploying-laravel-on-aws-complete-guide-2025
https://1v0.net/blog/laravel-deployment-checklist-for-2025
https://1v0.net/blog/step-by-step-ci-cd-pipeline-setup-for-laravel-12-on-github-actions/
https://1v0.net

