
Laravel Starter Kits

Testing Laravel Applications with PHPUnit

Testing Laravel Applications with PHPUnit
Testing is essential for building reliable, maintainable Laravel applications. With PHPUnit
integrated out of the box, you can write unit and feature tests that validate your business
logic, HTTP flows, and database interactions. This guide walks through setup, writing your
first tests, and understanding typical test outputs.

Setting Up PHPUnit in Laravel
Laravel ships with PHPUnit preconfigured in composer.json under require-dev.
Confirm the dependency and install vendor packages.

"require-dev": {
 "phpunit/phpunit": "^10.0"
}Code language: JSON / JSON with Comments (json)

This ensures PHPUnit is available to Laravel’s test runner. If you’re upgrading, run
composer update to get the right version for your PHP/Laravel stack.

composer install
php artisan testCode language: Bash (bash)

The first run should execute the default example test and report results in a readable,
colored format.

https://1v0.net/blog/testing-laravel-applications-with-phpunit/
https://1v0.net/blog/testing-laravel-applications-with-phpunit/
https://1v0.net

Laravel Starter Kits

Creating Your First Unit Test
Use Artisan to scaffold a unit test class. Unit tests focus on small, isolated pieces of logic
without the framework bootstrapping overhead.

php artisan make:test UserMathTest --unitCode language: Bash (bash)

Open the generated file at tests/Unit/UserMathTest.php and add a simple assertion.

namespace Tests\Unit;

use PHPUnit\Framework\TestCase;

class UserMathTest extends TestCase
{
 public function test_basic_math_addition()
 {
 $this->assertSame(4, 2 + 2);
 }
}Code language: PHP (php)

This basic test verifies your PHPUnit setup. It runs quickly and proves your environment is
configured correctly.

Writing a Feature Test (HTTP + Database)
Feature tests exercise full request lifecycles, including routes, controllers, middleware, and
the database. Let’s test a simple “create post” flow.

php artisan make:test PostCreationTestCode language: Bash (bash)

Update tests/Feature/PostCreationTest.php to validate the HTTP response and
database changes.

https://1v0.net/blog/testing-laravel-applications-with-phpunit/
https://1v0.net

Laravel Starter Kits

namespace Tests\Feature;

use Tests\TestCase;
use Illuminate\Foundation\Testing\RefreshDatabase;
use App\Models\User;
use App\Models\Post;

class PostCreationTest extends TestCase
{
 use RefreshDatabase;

 public function test_authenticated_user_can_create_post()
 {
 $user = User::factory()->create();

 $response = $this->actingAs($user)
 ->post('/posts', [
 'title' => 'My First Post',
 'body' => 'Hello world!',
]);

 $response->assertRedirect('/posts');
 $this->assertDatabaseHas('posts', [
 'title' => 'My First Post',
]);
 }
}Code language: PHP (php)

This test signs in a user, posts form data, expects a redirect, and verifies that the record
exists. For production-grade examples of auth flows, also see How to Build Email
Verification in Laravel 12 (Step by Step) and Implementing Password Reset in Laravel 12
Without Packages.

https://1v0.net/blog/how-to-build-email-verification-in-laravel-12-step-by-step
https://1v0.net/blog/how-to-build-email-verification-in-laravel-12-step-by-step
https://1v0.net/blog/implementing-password-reset-in-laravel-12-without-packages
https://1v0.net/blog/implementing-password-reset-in-laravel-12-without-packages
https://1v0.net/blog/testing-laravel-applications-with-phpunit/
https://1v0.net

Laravel Starter Kits

Running Tests and Filtering by Class/Method
Run the entire test suite, a single class, or even a single method using filters.

run all tests
php artisan test

run a specific class
php artisan test --filter=PostCreationTest

run a specific test method
php artisan test --
filter=PostCreationTest::test_authenticated_user_can_create_postCode
language: Bash (bash)

Filtering speeds up the feedback loop while you iterate on a failing scenario.

Sample Output from php artisan test
Here’s a typical output when all tests pass. Your numbers will differ based on how many
tests/assertions you have.

PHPUnit 10.*/Laravel Test Runner

 PASS Tests\Unit\UserMathTest
 ✓ test_basic_math_addition

 PASS Tests\Feature\PostCreationTest
 ✓ test_authenticated_user_can_create_post

 Tests: 2 passed
 Assertions: 3
 Time: 0.58sCode language: Bash (bash)

https://1v0.net/blog/testing-laravel-applications-with-phpunit/
https://1v0.net

Laravel Starter Kits

When a test fails, the output highlights the failing assertion, expected vs actual values, and
a snippet of the stack trace to help you navigate the source quickly.

Seeding, Factories, and Faster Test Data
Use model factories and seeders to generate realistic test data quickly. This keeps tests
readable and reduces duplication across scenarios.

// Example: creating many posts for a listing test
$posts = \App\Models\Post::factory()->count(10)->create();Code language:
PHP (php)

Factories keep your tests expressive and focused on behavior. For deeper coverage, see
Using Laravel Factories and Seeders for Test Data.

UI-Related Testing Tips
For Blade-driven UIs, test the rendered output and important view data. Focus on what
matters (HTTP status, redirected routes, session flashes, and presence of key strings).

public function test_posts_index_renders_titles()
{
 $posts = \App\Models\Post::factory()->count(2)->create([
 'title' => 'Visible In List'
]);

 $response = $this->get('/posts');

https://1v0.net/blog/using-laravel-factories-seeders-for-test-data
https://1v0.net/blog/testing-laravel-applications-with-phpunit/
https://1v0.net

Laravel Starter Kits

 $response->assertOk()
 ->assertSee('Visible In List');
}Code language: PHP (php)

This checks that the index page renders properly and contains expected text. For browser-
level interactions (clicks, JS), consider How to Use Laravel Dusk for Browser Testing.

Wrapping Up
You learned how to confirm your PHPUnit setup, create unit and feature tests, filter test
runs, read outputs, and leverage factories for fast data setup. A disciplined testing habit
yields fewer regressions and more confidence when refactoring.

What’s Next
Continue strengthening your test suite with these related guides:

How to Write Feature Tests in Laravel for APIs
Using Laravel Factories and Seeders for Test Data
How to Use Laravel Dusk for Browser Testing

https://1v0.net/blog/how-to-use-laravel-dusk-for-browser-testing
https://1v0.net/blog/how-to-write-feature-tests-in-laravel-for-apis
https://1v0.net/blog/using-laravel-factories-seeders-for-test-data
https://1v0.net/blog/how-to-use-laravel-dusk-for-browser-testing
https://1v0.net/blog/testing-laravel-applications-with-phpunit/
https://1v0.net

