
Laravel Starter Kits

Using Laravel with GraphQL: A Beginner’s Guide

Using Laravel with GraphQL: A Beginner’s Guide
REST is common for APIs, but GraphQL is increasingly popular because it lets clients ask
for exactly the data they need. Laravel integrates with GraphQL using community packages
like rebing/graphql-laravel. In this guide, you’ll install GraphQL, define schemas and
resolvers, and build a small UI to query data directly from your Laravel app.

1 – Install GraphQL Package
We’ll use the rebing/graphql-laravel package, a mature GraphQL server
implementation for Laravel.

composer require rebing/graphql-laravel

php artisan vendor:publish --
provider="Rebing\GraphQL\GraphQLServiceProvider"

php artisan migrateCode language: Bash (bash)

This installs the package, publishes the config file (config/graphql.php), and prepares
migrations if you plan to store persisted queries or cache.

https://1v0.net/blog/using-laravel-with-graphql-a-beginners-guide/
https://1v0.net/blog/using-laravel-with-graphql-a-beginners-guide/
https://1v0.net


Laravel Starter Kits

2 – Create a GraphQL Type
GraphQL types describe what fields are available. Here’s a UserType that maps to our
User model.

// app/GraphQL/Types/UserType.php
namespace App\GraphQL\Types;

use App\Models\User;
use GraphQL\Type\Definition\Type;
use Rebing\GraphQL\Support\Type as GraphQLType;

class UserType extends GraphQLType
{
    protected $attributes = [
        'name' => 'User',
        'description' => 'A user object',
        'model' => User::class,
    ];

    public function fields(): array
    {
        return [
            'id' => [ 'type' => Type::nonNull(Type::int()) ],
            'name' => [ 'type' => Type::string() ],
            'email' => [ 'type' => Type::string() ],
            'created_at' => [ 'type' => Type::string() ],
        ];
    }
}Code language: PHP (php)

This type tells GraphQL that a User object has fields like id, name, and email. Types map
directly to models or DTOs.

https://1v0.net/blog/using-laravel-with-graphql-a-beginners-guide/
https://1v0.net


Laravel Starter Kits

3 – Create a Query Resolver
Resolvers tell GraphQL how to fetch data. Let’s make a query to fetch users with optional
limits.

// app/GraphQL/Queries/UsersQuery.php
namespace App\GraphQL\Queries;

use App\Models\User;
use GraphQL\Type\Definition\Type;
use Rebing\GraphQL\Support\Facades\GraphQL;
use Rebing\GraphQL\Support\Query;

class UsersQuery extends Query
{
    protected $attributes = [
        'name' => 'users',
    ];

    public function type(): Type
    {
        return Type::listOf(GraphQL::type('User'));
    }

    public function args(): array
    {
        return [
            'limit' => [ 'type' => Type::int() ],
        ];
    }

    public function resolve($root, $args)
    {
        return User::query()
            ->limit($args['limit'] ?? 10)
            ->get();
    }
}Code language: PHP (php)

https://1v0.net/blog/using-laravel-with-graphql-a-beginners-guide/
https://1v0.net


Laravel Starter Kits

This query returns a list of User objects. If limit is passed, it restricts the number of
results; otherwise defaults to 10.

4 – Register Schema
Now wire the type and query into GraphQL’s schema config so they are available to clients.

// config/graphql.php (snippet)
'types' => [
    'User' => App\GraphQL\Types\UserType::class,
],

'schemas' => [
    'default' => [
        'query' => [
            'users' => App\GraphQL\Queries\UsersQuery::class,
        ],
    ],
],Code language: PHP (php)

Types are registered by name, and queries point to their resolver classes. The default
schema now has a users query available.

5 – Testing the GraphQL Endpoint
GraphQL endpoints are usually mounted at /graphql. Let’s test with a simple query:

https://1v0.net/blog/using-laravel-with-graphql-a-beginners-guide/
https://1v0.net


Laravel Starter Kits

query { users(limit: 5) { id name email } }

This query fetches five users with only the requested fields (id, name, email). GraphQL
won’t fetch extra columns unless you ask for them.

6 – Quick UI: GraphQL Explorer
Many GraphQL packages include a built-in UI like GraphiQL or Playground. You can enable
it in dev, or build a minimal query tester:

<!-- resources/views/graphql/test.blade.php -->
@extends('layouts.app')

@section('content')
<div class="container">
  <h1>GraphQL Tester</h1>

  <textarea id="query" class="form-control mb-3" rows="6">
{ users(limit: 3) { id name email } }
  </textarea>

  <button class="btn btn-theme mb-3" onclick="runQuery()">Run
Query</button>
  <pre id="result"></pre>
</div>

<script
src="https://cdn.jsdelivr.net/npm/axios/dist/axios.min.js"></script>
<script>
function runQuery() {
  const q = document.getElementById('query').value;
  axios.post('/graphql', { query: q })
    .then(res => {

https://1v0.net/blog/using-laravel-with-graphql-a-beginners-guide/
https://1v0.net


Laravel Starter Kits

      document.getElementById('result').textContent =
        JSON.stringify(res.data, null, 2);
    })
    .catch(err => {
      document.getElementById('result').textContent = err;
    });
}
</script>
@endsectionCode language: PHP (php)

This test page lets you run raw GraphQL queries and see results in JSON format, making
development much faster without switching tools.

Wrapping Up
GraphQL provides a flexible alternative to REST. With Laravel and rebing/graphql-
laravel, you can define types, queries, and resolvers that let clients request only the data
they need. You also built a small query tester UI to try it out quickly. This approach reduces
over-fetching and speeds up client development.

What’s Next
How to Build a Multi-Auth API with Laravel & Sanctum
How to Add JWT Authentication to Laravel APIs
Integrating Laravel with Third-Party APIs (Mail, SMS, Payment)

https://1v0.net/blog/how-to-build-a-multi-auth-api-with-laravel-sanctum
https://1v0.net/blog/how-to-add-jwt-authentication-to-laravel-apis
https://1v0.net/blog/integrating-laravel-with-third-party-apis-mail-sms-payment
https://1v0.net/blog/using-laravel-with-graphql-a-beginners-guide/
https://1v0.net

